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PART | INTRODUCTION
In the past decade there has been much activity in the development of computational methods

\

| for the analysis of unsteady transonic aerodynamics about airfoils and wings. Advances have
‘ paralleled developments in steady computational fluid dynamics (CFD) with a lag of

|
\
r

approximately five years! due to the additional requirement of time-accuracy. Also
| contributing to this time lag is the sheer number of calculations required to perform fiutter

\ mmmbiom -

| analyses, a primary appiication

of unsteady CFD. Figure 1, taken from the specification
document for U.S. military aircraft,2 illustrates significant features which must be addressed
in the treatment of computational unsteady transonic aerodynamics. On the plot of equivalent

( airspeed versus Mach number, lines of constant altitude are straight lines through the origin
with decreasing altitudes represented by lines with steeper slopes. An airpiane's flight
envelope is typically set by the maximum limit speed and a typical flutter boundary curve,
characterized by the flutter airspeed gradually dropping to a minimum in the transonic speed
range followed by a rapid upward rise. The ability to predict this minimum, termed the
transonic flutter dip, is of great importance in design, since the fiutter boundary must be shown
by a combination of analysis and test to be outside the flight envelope by a margin of at least 15 ~
percent in equivalent airspeed, i.e. the flutter boundary must be outside the dashed line
boundéry in fig. 1. Subsonic linear unsteady aerodynamic theories have been quite successful in
predicting this flutter boundary for Mach numbers up to 0.6-0.7 but linear theory does not
account for the effect of aerodynamic shape or maneuvering conditions upon unsteady airloads at
transonic speeds. At these Mach numbers linear analysis has been used with more or less
success depending upon the severity of local transonic effects. The occurrence of flutter within

( the flight envelope usually leads to structural failure and loss of the vehicle, highlighting the
necessity of careful validation of computational methods intended for use in this area. This is a
key difference in the utilization of steady and unsteady computational methods which should be

clearly understood.

Transonic_Flow Phenomena

It will be helpful to distinguish the main features of steady transonic flow in order to

organize the discussion of unsteady aerodynamics. Figure 2, from ref. 3, indicates various

regions of transonic fiow development for the NLR 7301 airfoil, a 16-percent thick cambered
supercritical-type section. With increasing Mach number and moderate angle-of-attack, the

upper surface becomes critical between M = 0.4-0.7 with the first shock forming at an




increase of approximately 0.1 in Mach number. Pearcy et al.4 have classified several types of
flow separation which may occur. For conventional airfoils the typical pattern, termed type A,
involves the growth of a local separation bubble induced by boundary layer separation at the
shock foot, spreading rapidly to the traiiing edge as Mach number increases. This condition is

often accompanied by unsteady phenomena such as buffet and aileron buzz3. The steep aft
pressure gradients of modern airfoils, such as the NLR 7301, can lead to an alternate pattern,
termed type B, in which separation progresses from the trailing edge towards the shock. Figure
2 illustrates this type B separation, with fully separated flow aft of the shock occuring along the
line of maximum lift. Note the small "shock free" design condition occuring over a small

isolated range of lift coefficient and Mach number just prior to the onset of trailing edge

separaiion. Tiildeman3 notes the flow conditons in the region between the onset of trailing edge.
separation and fully separated flow are very sensitive to Reynolds number and the Iccation of
transition from laminar to turbulent flow.

Figure 3 shows a similar diagram, derived from ref. 5, of attached, mixed, and separated
flow regions for a complete aircraft at free stream Mach numbers between 0 and 2.0. In region
I, the flow is predominantly attached. To obtain optimum performance and to avoid the diag
penalty associated with flow separation, design cruise conditions for aircraft typically are
located in region I, near the boundary of region |l (mixed flow).

As speed and/or angle of attack increase, a transition region of mixed flow (region Il of fig.
3) is encountered. For rigid structures, this region is typified by the onset of localized regions
of flow separation which may exhibit significant aerodynamic unsteadiness. For realistic
flexible structures, the aeroelastic response of the structure interacts with the airflow to
induce much more complicated situations. For instance, structural vibrations can cause the
flow to alternately separate and reattach at flow conditions where a rigid structure would
support attached flow. The associated highly unsteady aerodynamic loading can interact with the
structure to cause unusual aeroelastic phenomena which may restrict the vehicle flight
envelope. '

With further speed and/or angte of attack increases which may be encountered under
maneuvering conditions, stable separated flow conditions emerge (region 1li of fig. 3). Leading-
edge vortex flows and shock-induced vortex flows are of this nature. At still higher angles,
vortex burstipg in the vicinity of the aircraft can cause severe buffeting. Within such regions
the flow is highly unsteady and accurate computations will require careful attention to

turbulence modeling. -




N,

While predictive methods for attached flows are reasonably well developed, the picket fence
in fig. 3 emphasizes the difficulty in predicting aeroelastic phenomena in the mixed and
separated flow regions. It also symoblizes novel fe~tures that are being encountered in
transonic flutter testing. Modern high performance aircraft are capable of maneuvering at
transonic speeds, leading to a much enlarged parameter space that must be considered in flutter
analysis and iesting. Wing/store ioading, fuselage interference, angle-of-attack, wing shape
and wing sweep all must be considered, and the traditional flutter boundary parameterization of
dynamic pressure at flutter versus Mach number may need to be augmented to adequately

describe aeroelastic stability boundaries. For instance, flutter tests give some indication that
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aeroelastic stability condition ne

these additional parameters affect the detaile
boundary. Thus, the pickets of the fence in fig. 3 represent possible regions of low damping or

instability that might be encountered.

Farmer et al.6 provided early test results documenting the effect of airfoil shape upon
flutter boundaries. Figure 4 shows their comparison of flutter boundaries for two structurally
and geometrically similar wings of the same planform. The supercritical wing was a reduced
stiffness model of the modified TF-8A wing while the conventional wing had a symmetrical
section. The two wings had leading-edge sweep angles of 44.5 degrees. Design cruise Mach
number was 0.90 for the conventional wing and 0.99 for the supercritical wing. The
supercritical wing was shown to have a 25 percent lower minimum flutter dynamic pressure
near Mach 1.0 where type |l mixed flow would be expected. Current transonic computational
methods are beginning to address this important area which will be a key topic for
computational aeroelasticity in the future. Other reports of aeroelastic model tests relevant to
this area are; single: mode flutter of a low aspect ratio wing studied by Erickson’, supercritical
wing flutter tests performed at the NLR8.9 and torsional b-uzz of aeroelastic wings tested at the
RAE10,

Figures 5-8 illustrate four types of aeroelastic response which have been encountered and
which offer challenges for com;ﬂutational methods. The four cases illustrate problem areas
encountered near the boundaries of aircraft flight envelopes, as operating conditions change

from high speed, low angle conditions to lower speed, higher angle conditions. The nonclassical

aeroelastic response observed on the DAST ARW-2 wing modell1, fig. 5, is a region of high
dynamic response at nearly constant Mach number which was encountered at dynamic pressures
well below those for which flutter was predicted. The motion is of the limit-amplitude type and

the response is believed to be associated with flow separation and reattachment over the



supercritical wing (type Il flow).

Figure 6 illustrates wing/store limited amplitude oscillations experienced by modern, high
performance aircraft under various loading and maneuvering conditions at transonic Mach
numbers. Such oscillations can result in limitations on vehicle performance. The conditions
for which this response occurs appear to be near the onset of type Il mixed flow. The response
typically increases for maneuvering flight conditions.

Dynamic vortex-structure interactions causing wing oscillations have beén observed on a

bomber type aircraft'2 for high wing sweep conditions during wind-up turn maneuvers, fig. 7.
The flow involves the interaction of the wing vortex system with the first wing bending mode
and occurs over a wide Mach number range (0.6-0.95) at angles of attack of 7-9 degrees.

At higher angles, interaction of forebody and wing vortex systems with aft vehicle componets (
results in vortex-induced buffet loads, illustrated Ain fig. 8. The figure shows the operating
conditions for which tail buffet may occur on a high performance fighter. Buffet of horizontal
tails can occur at intermediate angles of attack and is a result of the vortex system encountering
the horizontal tail lifting surface. As angle of attack increases, the location of vortex bursting
moves upstream in the wake. Loss of lift is associated with the burst location reaching the
vicinity of the aircraft, and vertical tail surfaces located in such regions can experience severe
dynamic loads.

Historical Perspective

This field received an initial impetus in the mid-1970's from three sources: Tijdeman's3
pioneering experimental work on transonic unsteady pressure measurements, Magnus and

Yoshihara's demonstration of key transonic flow features for an airfoil with an oscillating (
flap13 and the introduction of an economical transonic finite-difference solution algorithm by

Ballhaus and Goorjian14. Ballhaus15 gives a éurvey of the field from this period. The AGARD
Structures and Materials Panel Subcommittee on Aeroelasticity has selected experimental

unsteady pressure data sets and defined two- and three-dimensional Standard Aeroelastic
Configurations16.17 to provide reference computational test cases for the development and
validation of improved computational methods. The data sets were obtained from rigid models
undergoing pitch and control surface oscillations and includes both conventional and
supercritical airfoil geometries18.19.20, |n addition to these data sets, Sandford et al.21

summarizes a series of unsteady pressure tests made at NASA Langley and Tijdeman22 presents

a much used data set for a fighter wing configuration.




Computational methods have been pursued at a number of differing levels of physical
approximation to the flow equations. Magnus and Yoshihara!3.23.24 used an explicit algorithm

to solve the Euler (EE) equations. Steger and Bailey25 reported a significant early application

to the problem of aileron buzz using an implicit approximate factorization solution algorithm

for the navier-Stokes (NS) equations. Chyu and his coauthors26.27 have pursued further
applications of derivatives of this code. Most of the nonlinear unsteady computations to date
have been made by solving the potential equations, both with and without interacted viscous
effects. For example, the alternating-direction implicit (ADI) algorithm embodied in the
LTRAN? code of Ballhaus and Goorjian14 enabled efficient solutions of the two-dimensional flow
frequency transonic small disturbance (TSD) potential equation through the use of large time
steps. Extensions of this ADI algorithm have been widely used by many researchers. A semi-
implicit form of the ADI algorithm is used in the 3-D XTRAN3S code?28.29 developed for the
aeroelastic analysis of wings. Other TSD and Full Potential (FP) equation codes are described in
refs. 30-35. There is a growing‘ trend, especially for steady flows, towards use of the Euler
equations rather than the potential equations. Etiler equation codes treating 2-D oscillating
airfoils are reported in refs. 36-40 while Salmond4! and Belk42 show results from 3-D Euler
codes.

Over this same time period, several experimental investigations of periodic aerodynamic
flows about rigid airfoils have been reported. McDevitt43.44 documented such conditons for a
very narrow range of Mach number of an 18 percent thick circular arc airfoil and Levy45
reproduced the effect with calculations from a NS code. Subsequently, Mabey46 studied these
oscillations for circular arc airfoils with thicknesses of 10-20 percent. References 47 and 48
give details for a 14 percent circular arc airfoil. Related information regarding the interaction
of unsteady airloads caused by transitional boundary layers with structural oscillations is given
by Mabey et al.49. Another class of separation-induced periodic flow problems, vortex shedding
about rigid cylinders and airfoils at high angle-of-attack, has been studied using NS codes for a

variety of Reynolds numbers in refs. 50-52.

Unsteady aerodynamics has been the theme of four recent AGARD conferences>3-56 whose

proceedings contain a wealth of information. Survey papers focusing upon computational
requirements ‘and resources are given by Peterson57 and McCroskey et al.58. Summary papers

of the 1984 and 1985 AGARD conferences are given by Mykytow>9 and by Mabey and



Chambers60. The latter reference makes recommendations regarding computational and
experimental methods for unsteady flow phenomena and draws particular attention to the need to
pay careful attention to the nature of shock motions. The periodic oscillations about circular

arc airfoils are recommended as benchmark computational cases for all time-dependent
transonic viscous flow theories. Zwaan61 surveys aeroelastic problems in transonic flow while

Deiwert62 reviews the numerical simulation of unsteady interactive flows. Finally, Mabey63

gives a review of pertinent experimental research on time-dependent aerodynamics.

xperimental D
In this section, the airfoil geometries and wing planforms which have been most frequently
studied are summarized. In addition to the AGARD standard configurations, several other model

tests have been popular for comparison with computational results. Figures 9 and 10 show the

profiles and planforms of the 2-D16 and 3-D17 AGARD configurations, respectively. Data sets
for all of these configurations except the 6 percent parabolic arc, DO A1 and MBB-A3 airfoils
are given in refs. 18, 19, and 64. Tables 1 and 2, from ref. 1, tabulate selected references for
these and other configurations in which comparisons of experimental and calculated unsteady
pressures are given. The entries are grouped by the equation level of the physical modeling used
for the calculations. The references are not exhaustive but are an attempt to indicate

publication of significant experimental/computational comparisons or new capability.

The first three airfoils in Table 1 are conventional airfoils with 6, 10, and 12 percent
thickness ratios. Tijdeman3 tested the NACA 64A006 airfoil with an oscillatihg quarter-chord

trailing-edge control surface. Interpretations of these tests3 have provided insights into the
underlying mechanisms of unsteady transonic flows. Tijdeman indentified three types of shock
motion, denoted type A, B, and C. In type A shock motion, the shock wave remains distinct
during the oscillation cycle, with a periodic variation of shock location and shock strength. In
type B shock motion, the shock wave weakens and disappears during a portion of the cycle,
generally during the forward propagation of the shock along the surface. For type C motion, the
shock wave on the airfoil remains distinct and propagates forward along the airfoil chord and off
the airfoil leading-edge.

Davis and Malcolm65 tested the NACA 64A010A airfoil for pitching oscillations. Two cases
from this test have been widely studied: a case with a moderate shock wave atM =08 anda =0

degrees and a case with steady shock-induced separation at M - 0.8 and o = 4 degrees. The NACA




0012 airfoil, tested by Landon18, differs from the other entries in Table 1 in that it was tested

for larger dynamic pitching amplitudes and for transient ramping motions making it suitable

for dynamic stall computaticnal studies. McDevitt and Okuno®6 have reported measurements of
periodic shock-induced oscillations for this airfoil.

Data sets for the 16 percent thick supercritical NLR 7301 airfoil are given by both
Tijdeman and Davis'8 and the shock-free condition for this supercritical airfoil has been a
chailenging computationai case. The 8.5 peicent thick MBB A-3 airfoil has been tested by
Zimmerman67 and represents a less severe supercritical airfoil computational case. Other-

supercritical airfoils tested for oscillatory motions or exhibiting unsteady behavior are: a 12
percent thick airfoil tested for pitching, heavihg and flap rotation by den Boer and Houwink68,
the RA16SC1 airfoil tested by ONERAB9, and the cryogenic test of a supercritical SC(2)-0714

airfoil by Hess et al.70. Reference 68 reported large dynamic responses of airloads on the
supercritical airfoil for both oscillating and static motions at type |l flow conditions and

introduced the concept of "aerodynamic resonance.” Similar periodic shock-induced oscillations
are reported for the RA16SC1 airfoil69.
Tests of rigid circular arc airfoils have been reported by McDevitt et al.43, McDevitt44,

Mabey48 and Mabey et al.47. Refere_hces 43 and 44 give details of tests of an 18 percent thick
airfoil for Reynolds numbers of 1 million to 17 million, covering laminar to fully developed
turbulent flows. The wind tunnel walls were contoured to approximate the inviscid sfream-
lines over the airfoil at M = 0.775. Periodic unsteady airflows were observed over a narrow
Mach range whose extent depended upon whether Mach number was increasing or decreasing.
For increasing Mach numbers, oscillations occurred for 0.76 < M < 0.78 while for decreasing

Mach number the range was wider, 0.73 < M < 0.78. The frequency of the oscillations was 188

+3 Hz (reduced frequency k = 0.48 based upon semi-chord). Mabey46 studied similar periodic
flows for a series of circular arc airfoils ranging in thickness from 10 to 20 percent at
Reynolds numbers of 0.4-0.6 million. In ref. 47, further investigations on a larger 14
percent thick biconvex wing at Reynolds numbers of 1-7 million is reported. Two necessary
criteria evident from the experimental results for the existence of the periodic unsteady flow
are given: thickness/chord ratio greater than 12 percent and local Mach number upstream of
the terminal -shock wave in the range

1.24 <M < 1.40

McDevitt44 identifies the predominant shock motion for the 18 percent thick airfoil as fype c
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whereas Mabey et al.47 argue that it is type B motion.
The smaller number of entries in Table 2 reflects the situation regarding 3-D testing in

that there are fewer experimental data sets widely available and fewer comparisons of

experimental and calculated results have beer published. Tijdeman22 tested a model of the F-5
fighter wing including external tanks and stores. This wing has an aspect ratio of 2.98, a taper
ratio of 0.31 and a leading edge sweep of 32 degrees. The relatively thin wing section, a
modified NACA 64A004.8, has made this a popular computational case since it is well within the
capability of TSD codes. Transonic and low supersonic test conditions are available. Of the
AGARD Standard Configuration models shown in fig. 6, the NORA model is the most extensively

tested. It is a model of the Mirage F-1 horizontal tail which has been tested in four European

wind tunnels!7.18,

The AGARD rectangular wing and the RAE Wing A model have symmetric airfoil

sections!7.18,20 whereas the ZKP wing and LANN wing have supercritical airfoil sections17,19.

Additional models tested for oscillatory pitching are the NASA Rectangular Supercritical Wing
(RSW) model71,72 and the RAE AGARD tailplane model64. The former had a 12 percent

supercritical airfoil section while the latter had a NACA 64A010A section, the same as one of
the AGARD 2-D configurations.

Also included in Table 2 are references to several other published comparisons with
experimental data. These cases are of interest since the models were aeroelastic and some
comparisons of experimental and computed transonic flutter boundaries (or aeroelastic
response) are given. lIsogai gives comparisons for a high aspect ratio supercritical transport
wing in ref. 34 and for the supercritical wing flutter model of Farmer et al.6 in ref. 74.
Bennett et al.7S give static aeroelastic comparisons for an aspect ratio 10.3 supercritical wing

which was extensively instrumented for unsteady pressure measurements’6. Finally,

Guruswamy and Goorjian77 present calculations for a rectangular parabolic arc flutter model.

m ional Meth
A variety of fluid dynamic flow models is available to address unsteady aerodynamic
computations. The choice of an appropriate method calls for assessment of the difficulty of the
aerodynamic problem being addressed. Type | flows, fig. 3, include one of the most important
aeroelastic ahalysis conditions, cruise at high dynamic pressure. Classical linear aeroelastic

analysis has been primarily focused upon this condition. The transition from type-| to type |l
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conditions can occur due to aircraft maneuvering with little decrease in dynamic pressure.
Thus, aeroelastic response and stability of aircraft operating in type Ii flows can be quite
important although they have only recently been brought within the range of computational
methods.

Computational methods available for unsteady aerodynamic compuiation include; the
ciassical (linear) small disturbance poieniiai equation {CSD), noniinear potentiai equation
(both Transonic Small Disturbance, TSD, and Full Potential, FP, Euler equations (EE) and '
Navier-Stokes equations (NS).

Issues which have been central to unsteady CFD have been the choice of implicit versus
explicit algorithms, the stability of alternative solution algorithms and the treatment of
computational grids. Explicit schemes are simple to code and easily vectorizable but are limited
in allowable time step by the stability limit imposed by the signal propagation time over the
smallest grid cell. Faced with the requirement of maintaining time-accuracy throughout the
entire field for aeroelastic comp_utations, this easily leads to excessive computation times,
especially for viscous flow calculations where a very fine mesh near the surface is required to
Jesolve the boundary layer. The alternative implicit solution algorithms thus are favored and
attention must be given to their relative stability and accuracy characteristics. Grid generation
for unsteady problems in which the body boundary moves, such as for an oscillating control
surface or an aeroelastic deformation, raises new issues over those involved in steady flows. To
maintain accuracy, the body-conforming grid must be realigned with the body at each time step.
Schemes for accomplishing this have been studied as well as the necessity of moving the grid at
all. When body motions are small with perturbations mainly normal to the surface, imposing
boundary conditions on the mean surface location may be an acceptable approximation. Finally,
the nature of unsteady calculations means that the solution is not allowed to achieve a steady-
state and thus the dynamic response of numerical calculations on the computational grid is more
important. For example, grid cell stretching in the near and far field will affect the
computational impedance of the grid for unsteady calculations.

In the following sections the physical flow models will be described in order of decreasing
complexity, to be followed by discussions of typical results ilIustratingA progress for the
various flow modeling levels. Since the historical trend is for computational methods to mature
most rapidly for the simpler flow models, this will lead us naturally from classical linear’
results back to the Navier-Stokes equations. Along the way, capabilities such as the ability to

treat geometric complexity will be discussed.
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PART Il FLUID DYNAMIC FLOW MODELS

Navier-Stokes Equations

Rumsey ahd Anderson78 give the thin-layer approximation to the Reynolds averaged Navier-
Stokes equations for two-dimensional flow. In the thin-layer approximation viscous terms are
resolved in a layer near the body where viscous terms in g, the direction along the body, are
| neglected and only terms in 1, normal to the body are retained. The equations are written in

generalized coordinates and conservation form;

9 A 9 A I A A
—(Q+—(G)+— H-H)=0
ot ag an v ] (1) (

| p ] pU ]
A Q 1 pu A 1 | pUu+&p
Q = T = T : G= -J— * ( 2)
pv pUV+Ep
e : (e+pU-&t
-~ by . .
_ - _ .
pv 0 :
ﬁ= 1 pVu+np | A 1 My Cx + My Ty 3 C
7 ; H, 3 (3)
pVV+ nyP Ty ¥ My Tyy
I (e +p)V - Tltpd i n,b, + leby )

The curvilinear generalized coordinates (&, 1) correspond to the coordinates parallel and
normal to the body surface, respectively and are related to Cartesian coordinates (x, y) via the

transformation




VY

§=(X,}’,t), ﬂ=(x,y,t), T=1

13

(4)

Note that the transformation is time-dependent, allowing the grid to move to follow body motion

and giving rise to grid metric terms such as m:p in eq. (3).

the iy and § coordinate directions are
U=§xu+<‘,yv+§[
V=nxu+nyv+n‘
while the pressure is
p=(r-Dle-5p (o +)]

The state vector Q represents the density, momentum and

Jacobean of the transformation is J, defined as;

;.96
a(x, y)

The contravariant velocities along

(6)

total energy per unit volume. The

(7)

The equations are nondimensionalized by the freestream density pe- and soundspeed d-. The shear

stress and heat flux terms are defined in tensor notation as;

M du, d J Xa ks
Ty TR, HEx TR T hax %
_ M ]B(az)

(8)

(9)

(10)
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In (3), b, Isdefined as

b =ut _-q (11)

Stokes hypothesis for bulk viscosity, A + 2u/3 = 0, and Sutherland's law for molecular

viscosity,
~~ ~ S 3 m s
L= =(T/T ) [(T_+c)/(T+c)] (12)

are used, with T = freestream temperature = 460° R, and ¢ = Sutherland's constant = 198.6°

R.
Boundary conditions are applied explicitly. No slip, adiabatic wall conditions, as well as

zero normal pressure gradient conditions are applied on the body

u=v=0 (13a)
_a__p_-a(az) =0
an— om B (13b)

In the farfield, a quasi-one-dimensional characteristic analysis is used to determine boundary

data. For turbulent calculations, turbulence modeling such as the algebraic eddy viscosity model

of Baldwin and Lomax79 is required.

Euler Equations
For sufficiently large Reynolds numbers the major effect of viscosity is confined to a thin
viscous boundary layer near the surface of a solid body. As a consequence, the inviscid portion
of the flowfield may be solved independently of the boundary layer. The reduced set of equations,
termed the Euler equations, are obtained by dropping both the viscous terms and the heat

transfer terms from the Navier-Stokes equations. Reference 80 contains details and discusses

consequences of these assumptions. Anderson et al.81 present the three-dimensional Euler .
equations in generalized coordinates for a moving grid mesh in a form anélogous to egs. (1-7).

With the generalized coordinates & and ¢ prescribed parailel and n normal to the body surface
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the equations are

A A A A
3Q OF oG oH
_—t— et —t —= (14)
o E I &

where
o ] [ pU |
/(\2=_9_=_1. pu , g=.}. pUu+& p (15)
T ] pv pUv +& p
pw pUw +E
e (e+pU-Ep
P pv- pW
A pVu+n.p A pWu + L p
GzT pVv+m.p ' H=y pWv + L p (16)
pVw+1.p pPWw +{ p
i (e+p)V-T1tp_ | (e+P)W-Lp]

The pressure p and the contravariant velocities U, V, and W are given by straightforward

extensions of egs. (5) and (6). The grid transformation metric variables are given by;
— - = - = J -
x J(ynzt zny€)' T J(zéyc yﬁzé)’ s (_yézn %Y,
§y = J(zﬂXC - xnzg), n, = J(XE,ZQ - ZE..XC)' Cy = J(zéx11 - xézn)

(17)
=] - = J( - ) = - ),
g, (xnyc ynxg), n, J(‘(gyé yc‘(é), g, J(x‘t’y11 yéxn)

& =x8-v& -z&, n=xn -yn-zn,§=-x -yl -2L,

In ref. 81 the boundary conditions are applied explicitly. On the body, the contravariant




velocity normal to the body is set to zero

V =V/|gradn| =0 (18)

and pressure, tangenial velocities and density are determined by extrapolation from the
interior. In the farfield, a quasi-one-dimensional characteristic analysis is used to determine
boundary data.

While the Euler equations do not treat viscous and heat transfer effects, entropy and
vorticity effects allow treatment of flows with strong shock waves (which generate entropy)
and moderate-to-high angle vortex dominated flows. Even though viscosity is eliminated, no
explicit Kutta condition enforcing smooth flow from the trailing edges of lifting surfaces is
required since "numerical" viscosity generated by finite difference solutions provides this

effect.

Potential Equation

If it is assumed that the flow is irrotational then the velocity field, V, can be shown to be the

gradient of a scalar field variable, the velocity potential ® (see ref. 80 for details)
V=Vd (19)
The conservation form of the continuity equation for two-dimensional flow becomes (ref. 82)
p,+ (p®) + (D), =0 (20)

For barotropic, isentropic flow the momentum and energy equations yaeld the compressible

Bernoulli equation from which the density p is determined.

1

_ v-1 .2 2 271
p—[1+—-2 (M”-Z(DI-(DX-(DZ] (21)

The spatial coordinates, x and z, are normalized by airfoil chord ¢, and time t is normalized by

a=/c. Density and <& are normalized by p.. and a-c.

Again, solutions are obtained for body fitted generalized coordinates which allow for body and
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grid motion. Note that here and in the following small disturbance potential equation, the
coordinates x and z are the freestream direction and the direction normal to the lifting surface
respectively. The transformation to a body-fiited coordinate system is given by

E=E(x,z,1), {=C0(x1z1), T=t (22)
The strong conservation form of eq. (20) is maintained by writing the continuity equation as
U pW
2) + (2 + (=), = 23
@), + (), + (7, =0 (23)
Equation (21) transforms to
| L
o= (1+ LM 20 - U +E)®, - (W + Lo 1) T (24)
2 ) T v TE Urg

Where the contravariant velocities are

U=g+ G +E0,+ G L +ELP,

(25)
2, 42
W = Cl + (gxcx + &zgz)d)g + (CX + CZ)<Dl
and J=8C-88 - The isentropic pressure coefficient is derived from the compressible
Bernoulli equation as
2 ¥
Gz -1 (26)

YM

oo

The airfoil boundary condition that the flow be tangent to the airfoil is satisfied by requiring W
- 0 on the airfoil. For lifting flows, the shed vorticity is represented by a jump in potential

across the wake line. For isentropic flows the condition is
r +<w>I, =0 (27)
T g

where T is the jump in potential across the wake, ®Y - d>-|, and <W> is the average of W above

and below the wake. In the farfield, the flow is set to freestream conditions
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d=M X, p'—-‘—"l . (28)

ransoni mall Disturban Potential Equation
The Transonic Small Disturbance (TSD) Potential equation is derived from the inviscid

Euler equations assuming that the flow is a small perturbation of a steady uniform flow, Us, in

the x direction (see, for instance, ref. 83). The TSD velocity potential function, ¢, describes

the perturbed velocity components u, v, w.

_9% - _
u—g, V== W = o (29)

where the total velocity in the x. direction is U= + u. References 84 and 85 give the modified

TSD potential equation in conservation form as

2 e e o = (30)

where
f,=-Ad, - BO,
2 2
f,=E¢ +Fo_ + Gcby
(31)
f2 = q>y + H¢x ¢y
f3 =¢

Time, t, and the Cartesian coordinates x, y, and z are nondimensionalized by the freestream

Z

velocity and wing reference chord.

The coefficients A, B and E are defined as

2 2 2 .
A=M’, B=2M", E=1-M (32)
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Several choices are available for the coefficients F, G and H depending upon the assumptions used

in deriving the TSD equation29. Briefly, the coefficients are referred to as "NASA Ames”
coefficients when defined as

1 1
=S+ DM’ G=o(y-IM’, H=-(- DM’ (33)

and are referred to as the "NLR" coefficienis when defined as

1 1
=5 B-@-PMIM’, G=-oM' H=-M’ (34)
The "classical” TSD coefficients are given by
1 2
=-s @+ 1M, G=0, H=0 (35)

and finally the coefficients for the linear potential equation, valid for subsonic and supersonic
small perturbation flows, are

F=G=H=0 | (36)

The TSD equation (29) is distinguished from the higher equation level flow models in that,

within the small disturbance assumption, the computational grid is not required to move with

the body since boundary conditions are imposed at the mean plane, usually z = 0. The wing

flow tangency condition boundary condition is

0, =f,+f (37)

where f£ (x,y,1) = 0 describes the upper and lower body surfaces. The trailing wake boundary

conditions are
(6, +¢]=0 (38)

(0,1=0 ‘ (39)
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where [ - ] indicates the jump in the indicated quantity across the wake. Equation (37)
enforces the convection of vorticity downstream from the trailing edge and eq. (38) requires
continuity of the z component of velocity, w, across the wake. The pressure coefficient may be
computed using either linear or nonlinear forms of the Bernoulli equation. The exact nonlinear

equation is given by eq. (30) where the appropriate density equation for eq. (30) is

1

-1 2 2 2 .2 v-1 ‘
p=[1-1_2__M”(2¢x+¢x+¢y+¢z+2¢[)]{ (40)
Alternatively, the linearized Bernoulli relation gives

Co=-2(0,+9) (41)

While eq. (41) is the proper choice based upon formal order of magnitude reasoning, the higher
order terms in eq. (40) are sometimes not negligible for cases of interest.

Farfield ngndgry Conditions: Two forms of farfield conditions have been used for the
unsteady TSD equation. Table 3 lists these as “reflecting” and "nonreflecting” boundary

conditions. These terms are descriptive only and indicate the relative effects of the two sets of

conditions upon unsteady calculations. The nonreflecting conditions are derived87 from a
characteristic variable analysis of solutions to eq. (30) in the farfield. They are implemented
as first order plane wave conditions and are intended to prevent the reflection of a major
portion of signals incident upon the boundaries back towards the vicinity of lifting surfaces.
Note that in the steady state, the time derivatives in egs. (40 b-g) vanish resulting in simple
Neumann "reflecting" boundary conditions. Proper grid design is very important for unsteady
calculations and involves consideration of grid extent, grid stretching and boundary conditions.
If any one of these factors is not properiy treated, spurious unsteady results may be observed.
It is noted that an alternative farfield boundary condition has been shown to be superior for

two-dimensional steady calculations. Imposing conditions appropriate to a point vortex of the

appropriate étrength to match lift87 has yielded solutions of the Euler equations which were

insensitive to computational grid extent, leading to efficient solutions for small grid extents. No
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corresponding development for unsteady flows is available.

Table 3. Farfield boundary conditions for the Unsteady TSD potential equation
Reflecting Nonrefiecting
Upstream ¢=0 =0 (40a)
1 -B D .
Downstream ¢ +¢,=0 §(E+TE')¢:+¢x=O (40b)
=0 D =0

Above ¢, = ?¢t+¢z- (40c)
9. =0 D6 -6=0

Below P, 50-0,= (404d)

D
Right spanwise ¢,=0 5o+, =0 (40e)
Left spanwise D =0 (40f)
p ¢, =0 500, =

(for full-span modeling)

Symmetry plane ¢,=0 _ ¢,=0 (40g)

(for half-span modeling)

C=E+20_ , D=+[4A+B%

Linear Small Disturbance Potential Equation

When the coefficients of eq. (36) are used in eq. (30) the classical linear potential equation
results. In dimensional form as given in ref. 88 it is

2 1 M 2
V¢-—2¢n-—a——¢xl-M 0x=0 : (43)
a

oo
©o




Equation (43) holds for small disturbances from freestream conditions for subsonic and
supersonic flight.

Special cases of eq. (43) have been extensively studied and closed form solutions are
available for some cases. In other cases, asymptotic methods provide insight into the form
required of numerical solutions. Since these linear solution methods are well calibrated with
regard to important issues, such as wing flutter, for speeds up to high subsonic Mach numbers,
it behooves practitioners of unsteady CFD to verify their methods, wherever appropriate,
against these linear methods.

The important case of steady state, simple harmonic motion has been most extensively

studied. With body motion and potential assumed given by

£y, 0=fxy e (44a)
<t>(x,y,z,t)=<1>(x,y,2)ei°)t (44b)
eq. (40) becomes
2T T T Mies  @'s o
(1'M)¢xx+¢yy+¢u"—a'—¢x+—a'2—¢— (45)

Equivalently, eq. (45) results from applying a Fourier transformation to the time variable in
eq. (43). Equations (43) and (45) present the governing equations for unsteady linear
aerodynamics in the time domain and the frequency domain. The time domain approach has been
valuable in giving insight into the nature of solutions for small values of nondimensi.onal time.
On the other hand, the frequency domain approach has provided the majority of the working
methods used in aeroelastic design and analysis.

The time domain form of eq. (43) is the basis of the "acoustic planform” analogy used in ref.
97 to calculate the initial transient pressures and loads on airfoils and wings undergoing
sinking and pitching motions. Figure 11 shows pressures on an impuliévely started sinking and
pitching airfoil for several times during the first four chordlengths of motion. The Mach
number is 0.8. The discontinuity in slope of the pressure indicates the progress of the

upstream traveling pressure pulse generated at the trailing edge by the impulsive mction.  This

pulse travels at a speed of (a- - U). The faster downstream traveling pulse (with velocity a. +

C
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U) can be seen in fig. 11(a). The resulting lift and moment transients for several Mach
numbers are shown for the first 10 chordlengths of travel between 0 and 2 in fig. 12.
Reference 88 discusses the use of piston theory in determining the starting value of pressure
and integrated loads. Att =0 the pressure is a function only of the local normal velocity of the

surface, uo

3
'
"3
I
2
=~
=
I
(@]

This leads to equations such as the following for the initial lift coefficient per unit angle of
attack for any piane wing at any Mach number

de(o) 4

da.*\_’[

(47)

Reference 97 also contains time-accurate solutions of eq. (43) for 3-D wings in supersonic
flow.

in the alternative frequency-domain approach, extensive use has been made of fundamental
solutions (Green's functions) of the governing equation such as the source and vortex potential
functions for incompressible flow and the acoustic source pulse and doublet for compressible
flow. Due to the linearity of eq. (43), superimposed distributions of these fundamental
solutions are made to satisfy the boundary conditions. The assumption of simple harmonic
motion, eqs. (44), enables the manipulation of the resulting expressions into functions which
may be used to computed the strength of the singularity distribution. . '

For incompressible flow eq. (43) reduces to Laplace's equation

V=0 (48)

For two-dimensional flow and assumed harmonic airfoil motion, Theodorsen89 derived an
analytical solution of (48). Garrick and Rubinow90 give a closed form solution of (43) for this
same problem for supersonic flow while Possio's integral equation (see ref. 88) results from
operating upon eq. (43) to produce a singular integral equation relating known downwash

velocities, wa(x), on the airfoil to the unknown pressure difference, Apa (eq. 6-111, ref. 88)



k(‘ g) _b<x<b (49)

The kernel function, K, is composed of Hankel or Bessel functions and is a function of the Mach
number and the assumed reduced frequency of oscillation, k.
The corresponding singular integral equation for three-dimensional flow has been studied

extensively (see, for instance, refs. 88, 91, 92)

— 1 - '
w0y =— [[ 85, &M KM K -, (v - midEn (50)
4n 3

Inversion of eq. (50) via substitution of assumed series expansions for the unknown pressure
and numerical quadrature or collocation solution procedures have been used extensively for
aeroelasticians. Knowledge of the functional behavior of the pressure loading near surface edges

and slope discontinuities has been of great help in constructing suitable loading functions.

Tables 4 and 5, from Ashley's®3 survey, illustrate the singular behavior of ACp near wing edges
and control surface boundaries. Note particularly the singular behavior for subsonic flow for

the cases of control surface edges. (logarithmic, ~ In |x - xc|) and for wing leading edges (~ (x

- x1)-1/2) and sideftrailing edges (~ (y - y1)1/2, (xt - x)1/2). Aeroelastic forcing functions
are calculated as weighted surface integrals of these pressure loading functions. Aftempts to
perform these integrations numerically without acknowledging the possibility of such singular

behavior can lead to significant errors and influence solution convergence. Rowe and his

coauthors94 have approached this issue by modeling the singular behavior explicitly in their C_
RHOIV "kernel function” computer code. With the singular portion evaluated analytically, the

remaining integral equation is regular and straightforward numerical solution possible. An

alternative method which is widely used is the doublet-lattice method of Albano and Rodden35.
Here the lifting surface is divided into small trapezoidal panels (fig. 13). Within each panel
line segments of acceleration potential doublets are placed on the panel quarter-chord line. The
unknown doublet line strength for each panel is determined by satisfying the known downwash
velocity boundary condition at the mid-point on each panel's three-quarter chord line. Thus the
problem is reduced to a linear set of algebraic equations for the doublet line strengths. The
choice of the 3/4 chord location for downwash evaluation is selected embirically upon noting

that this results in the Kutta condition being satisfied. This paneling method can be easily
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extended to multiple lifting surfaces as well as to body interference problems.

Comparisons96 of a convergence study comparing the RHOIV kernel function method and the
doublet-lattice method are shown in figs. 14 and 15. Figure 14 shows the real and imaginary
parts of unsteady lift and moment for an aspect ratio 4 wing pitching about its trailing edge at k
= 0.3, M = 0.9. For this case 6 terms were required for the assumed pressure loading function
in RHOIV in order to obtain convergence. The doublet-lattice results indicate that as usual the
lift convergés faster than the moment and that, for this case, the generalized force magnitudes
converge quickly while the phase angles require more terms for convergence. Figure 15 shows
a similar comparison for hinge moment due to control surface oscillations of a rectangular wing
10 oress

i$ are K = 0.6, M = 0.5 and 10 pressure terms were
1

required for convergence in RHOIV. For up to 18 panels per chord ( and up to 6 panels on the
control surface) the doublet-lattice result is converging slowly to the RHOIV result. For this
case, the kernel function is more efficient in terms of computer resource units (CRUSs).

The behavior of solutions of (43) for Mach numbers near unity and/or for high reduced
frequencies is of interest for the insight which may be gained of the transition between subsonic
and transonic flows. Figure 16, from ref. 98, shows the pressure distribution on an airfoil
oscillating in plunge for three values of k. The oscillations, which are most apparent for k = 5,
are termed Kutta waves since, for this subsonic condition, they are generated at the trailing
edge. For 2-D flow, isolated source solutions of eq. (43) can be viewed as cylindrical pressure‘

waves radiating outwards from the source point at the acoustic speed, a~. Viewed from the

translating airfoil, two wave fronts traveling at relative speeds of a- + U are seen on the z = 0

plane. For high subsonic speeds and low supersonic speeds, the upstréam propagating wave,
a- - U, generates the surface pressure waves seen in fig. 16. The oscillations are in
quadrature, with the real part having a cos [R (x - 1)] dependence and the imaginary part
having a sin [R (x - 1)] dependence indicating an upstream propagating signal with wave
number

R =Mk/(1-M) (51)
radians per semichord. For M = 0.7 and k = 5 the wave number is 11.6 radians per semichord,

agreeing with the oscillations shown in fig. 16.

These pressure oscillations are also observed in solutions of (43) for low supersonic Mach



numbers. The pressure difference for oscillatory plunging98 is

8k2 X

AC, (x, k) = - [ £ (M, x®) +ii§‘-e'i°" I (%I‘-)] %e*“" (52)
Figure 17, from ref. 98, gives results for M = 1.02 and k = 0.4. In this case the oscillations
‘are due to the overtaking of upstream traveling waves generated near the leading edge, leading to
the supersonic wave number R = Mk/(M - 1) of 20.4 radians per semichord seen in the
imaginary part over the forward part of the airfoil. Note the transition near midchord to an
oscillation of one-half this wavelength caused by the interaction of the two terms of eq. (52).

These pressure oscillations influence the integrated airfoil loads for Mach numbers near
unity as shown in fig. 1898. The influence appears to be largest for low supersonic speeds. Also
noted the reversal of trend of Re(c!) for M = 0.7 - 0.8, a feature important for aeroelastic
analysis.

in concluding this section, the equivalence of the time-domain approach of eq. (40) and the

frequency-domain approach of eq. (45) is noted. Edwards98,99 discusses several
misconceptions regarcing solutions of eq. (45) for diverging and converging oscillatory
motions. Valid solutions of eq. (4) for arbitrary motions are obtained via Laplace -
transformation of eq. (43). Solutions are functions of the Mach number and the generalized
reduced frequency § = b/U (o + in). Generalized unsteady aerodynamic methods are becoming

widely used for aeroelastic analysis and in the design of active aeroelastic control systems.

Figure 1998 shows a typical result, with the unsteady lift coefficient of a wing given for rigid

plunging motions at M = 0.5. Results are given as a function of amplitude, ¥, of motion for

three phase angles, 6, where s = rei®. Harmonic oscillation results are given by 6 = 90° while

converging and diverging motion results are given by 120° and 60° respectively.

r nd R r R iremen
The previous section briefly surveyed solution methods which are available for the linear
potential equation. These methods are well developed and, for the most part, do not tax available
computational resources. This is definitely not the case for solution methods of the nonlinear
fluid dynamic models to be considered in the remainder of these lectures. There are, in general,
no closed form solutions available for these equation sets and iterative numerical methods are

the rule. Computational unsteady aerodynamics requires careful selection of equation level -
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based upon considerations of the flow physics involved, required accuracy and the number of
cases required to perform aeroelastic analysis. The discussion of figures 1-8 has summarized
the range of flow physics involved in current aeroelastic problem areas. Accuracy
requirements are dependent upon the type of flow as delineated in fig. 3. Table 6 summarizes
the current accuracy of predictions of key aeroelastic response mechanisms and suggests
accuracy requirements for computational aeroelastic anaiysis. Note that the current accuracy
level for high subsonic speed attached flow, the most relevant gage of current capability, is on
the order of 10 percent. Novel computational methods will have to do significantly better than
this to be competitive.

The resources required are a function of the number of computer operations required per
case and the number of cases to be calculated. Tables 5 and 6, from ref. 100, su;nmarize the
resources required for typical aeroelastic analyses.

Table 7 indicates the computer resources required to perform a flutter analysis of a
complete aircraft configuration at one Mach number. Time-marching transient aeroelastic
response calculations are used io determine the flutter condition. This involves, on average,
four response calculations: two to calculate steady flow field conditions and two transient
responses bracketing the flutter speed. Modal frequency and damping estimates from the
responses are determined and the flutter speed interpolated from the damping estimates.
Calculations have been performed for a complete aircraft configuration with a transonic small
disturbance (TSD) potential code using 750,000 grid points. The calculation of one flutter
point for this case on the CDC VPS-32 computer would require 2.3 CPU hours. Estimates of
similar calculations using the full Navier-Stokes equations would require 77.8 CPU hours.
Conditions for this estimate are: a Reynolds number of 10 million, 7 million grid points and an
assumed computational speed of 100 million floating poiht_ operations per second (MFLOPS).

Table 8 summarizes computational requirements for flutter calculation of a complete flutter
boundary for wing/body/canard configuration on the CDC VPS-32 computer operating at 100
MFLOPS and on the NAS CRAY || computer operating at 250 MFLOPS. Again, four response
calculations per flutter point are assumed. It is assumed that ten flutter points will be
calculated to define the flutter boundary versus Mach number. The left hand column indicates
the difficulty of the flowfield calculation as defined in figure 1; type | for attached flows, type Ii
for mixed (alternately separated and attached) flows and type Ill for fully separated flows. The
second column indicates the fluid dynamic equation level needed to accurately model the flow
physics of the problem. Note that two-dimensional strip boundary layer models are assumed
for interactive viscous-inviscid calculations for the potential and Euler equation methods. It is
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anticipated that potential equation models will be adequate for flutter calculations of type |
attached flow conditions and may aiso be quite useful for some type Il mixed flow cases. Full
potential equation codes will require about 50 percent more computer resources than TSD
methods due to the necessity of conforming, moving grids, among other considerations. Euler
equation methods should also be adequate for these conditions and, in addition, be able to treat
more difficult type Il fully separated flows. Euler equation methods are estimated to require
approximately twice the resources of TSD methods. The full Navier-Stokes equations, which
should only be required for type Il and Il flows, require approximately 30 times the resources
of the Euler equations (at a Reynolds number of 100 million).
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PART Il COMPUTATIONAL SOLUTION METHODS

In this lecture, methods which have been developed for the solution of the fluid dynamic flow
models described in Part Il will be discussed. The presentation will be partly historical,
leading from the simpler TSD potential equation to the higher equation level models. Aithough
not always the case, this sequence broadly reflects the progression of research in this area.
Solution algorithms will be discussed and results both of historical interest and indicative of the
current state will be presented. It is helpful to regard the evolution of progress in this area as
following four broad stages:

i.) Early computational demonstrations

ii.)  Maturation of compuiationai methods

iii.) Application to realistic configurations

iv.) Type Il mixed flow computation
The first three stageé are those typically encountered in the development of any novel technology
within a given problem area. In the current context, they relate to development of capability of
type | attached flow (fig. 3 and Table 4) which has been a dominant focal point of applications.
The fourth stage listed serves as a caution to too rigid a categroization as parallel efforts for
type Il mixed flow calculations have proceeded along side, and sometimes ahead of those for
attached flows.

A thread which may be discerned in reviewing this field is the continued evolution of
computational methods, with applications and evaluations by comparison with experiment, to
successively more difficult cases. Thus, for instance, an algorithm introduced to treat type |
attached flow cases is upgraded in capability to enable treatment of more difficult type | and
type Il cases and possibly even some type lll cases.

In the following, results of calculations for a number of the "Computational Test” (CT) cases
drawn from the AGARD Standard Aeroelastic 2-D16 and 3-D17 configurations will be presented.
These experimental cases are mostly for harmonic oscillations of a wind tunnel model in a rigid
(i.e. the models have been made as stiff as is practical in order to minimize aeroelastic
deformations) degree-of-freedom about a steady mean condition which, for pitching

oscillations, is described as

q(t):am+aosinkt (53)

The reduced frequency is based upon reference semichord unless otherwise specified.
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Response quantities, such as lift coefficient, are measured or calculated for a sufficient
number of cycles such that a stable average for the time history of the response is available.
The response will, in most cases be .cyclical at the frequency of the forced motion, k, but it will
in general not be purely harmonic. That is Fourier analysis of the averaged response of, for

example, the lift coefficient will give

Cl(t) = C1 + 2 [ch(Cl) sin nkt + Imn(Cl) cos nkt]; 0 <kt<2m (54)

n=1

with both Ren (CI) and Imn (Ct) having nonzero values for n > 1. Nevertheless, the fundamental
response at the forcing frequency, given by Ret (Ci) and Im1 (Ci) is most important since it is
most easily measured and almost always accounts for the largest part of the response. The
higher harmonics in the response given by the Fourier coefficients with n > 1 indicate the
degree of nonlinearity in the aerodynamic response.

The Fourier coefficients in eq. (54) may be obtained by several different approaches. If a
number of the harmonic coefficients are desired in order to study nonlinear behavior, then Fast
Fourier Transform (FFT) methods are most efficient. On the other hand, if only a few
coefficients are of interest, the traditional evaluation via numerical integration is efficient.
Finally, the following simple estimate of the fundamental response is useful

Re, (C) zl [C, (D -C ]-C
2t c 1 ol 1

t=—mn °

(55a)

=1
2

1
Im, (C) =5 [C,©-C® , _1-G (55b)

(o]

ISD Potential Equation, 2-D

The two-dimensional TSD potential equation has been extensively studied at several levels of
approximation. Reference 101 gives details of an alternating direction implicit (ADI) solution
algorithm for the equation

Co,+Ad,=Bo, +0, : (56)
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The potential is normalized by cU82/3 where c is the airfoil chord, and § is the airfoil thickness
ratio. The coordinates x, z and time, t, are normalized by ¢, ¢/61/3 and -1 where o is the

frequency of unsteady motion. The coefficient A=2k_ M‘/82/3 where ke = oc/U. In their

LTRAN2 code, Ballhaus and Goorjian14 implemented a solution of the low frequency version of
(50) by setting C = 0 and eliminating the time derivative terms the boundéry conditions, egs.
(37,38). Inref. 14 B=(1-M’)/8" -M™ (y+1) ¢, where the choice of the exponent is
arbitrary. Reference 14 made m a function of M~ such that the critical pressure

coefficient, C; , predicted by eq. (56) matched the exact isentropic C;. Houwink and vah der
Vooren102 extended the range of applicability of LTRAN2 by adding the time dependent boundary
condition terms, and solving a modified TSD equation wherein B = (1 - Mi)/ﬁﬂ3 - Mi ('y* +1) (’,)x
where y' = 2-(2 -y)Mi . The resulting cbde was termed LTRAN2-NLR. Whitlow101
extended the LTRAN2-NLR code by implementing Rizzetta and Chin's103 solution of the complete

TSD eq. (50) where C= kz MZ‘/82/3 . The resulting code was termed XTRAN2L104,
The ADI method advances solutions from time step n to time step n + 1 using successive
sweeps in the x and z directions

A ~ n n
X-sweep: = 5, (®,-6;)=D,f,+8,6, (57a)
] C n+l 2 n n-1 A 5 n+l 1 5 n+1 n 7
z-swe.ep. —At2 (d')i.j - ¢i.j + ¢i.j ) + _A_t' X (¢i.j - q)i,j) - 5‘ 2z (¢i,j - ¢i,j) (5 b)

where 75 is an intermediate level potential and

2

8,6 = Xk ;-1 )
5 0= 2 [ ¢i,j+1 ] q)i,j ) q’i.j ) ¢i,j-1]
2z z.  -Z. z . -Z zZ. -7

#1071 i+l i IR
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[ 525 = ¢?,j + B?.‘ a;x. ]
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n oo

2, * n
B;i= 523 -M_ (v ‘“1)‘1’;(iJ

The mixed difference operator, Dx, is constructed to maintain conservation form. Murman-Cole

spatial differencing results in the following form for Dxfi,

2

D,f;; = X Xg [ -8) Capy~fiand + &0 Eapy - fisp ) (58)
1 1-
0 Cinrz * Ciany > 0
g =
1 c c 0

ir12 T S <

With the LTRAN2 code, Ballhaus and Goorjian14 were able to reproduce Tijdeman's3 type A,
B and C shock motions for the NACA 64A006 airfoil with an oscillating flap. The motions were

also demonstrated computationally by Magnus and Yoshiharal3 and Magnus” using an explicit

Euler equation code. Figure 20, from ref. 14, gives these three calculations. The computational

conditions for these cases are

Type Mach K flap_amplitude
A 0.875 0.234 1.0 deg.
B 0.854 0.179 1.0 deg.
C 0.822 0.248 1.5 deg.

These conditions are 0.15 - 0.28 Mach lower than Tijdeman's test conditions, very likely due to

wind tunnel wall interference. The Euler code used a Lax-Wendroff explicit differencing
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solution algorithm and a Cartesian grid with an embedded fine mesh around the moving shocks
‘was used. The boundary conditions were applied at the mean airfoil position. The Euler code
used 5484 grid points and required 1500 seconds per cycle whereas the LTRAN2 code required

8 seconds (CDC 7600 computer)14. This significant reduction brought the expense of 2-D
unsteady transonic CFD calculations within the reach of many researchers.

Monotone Differencing. It has been shown that Murman-Coie differencing ailows stable

entropy-violating expansion shocks to be computed as part of the numerical solution104,
Reference 104 showed that it can also trigger numerical instabilities. Figure 21101 shows
such a case for the MBB  A-3 airfoil oscillating in pitch about its leading edge at M = 0.8 and

k =0.2. Atkat = 254° an instability is developing on the lower surface at the leading edge that
causes program failure within several iterations. When the monotone differencing scheme of
Engquist and Osher106 is used, expansion shocks are not admitted and significant increases in
allowable time steps over those 'allowed by the Murman-Cole scheme are achieved. The Engquist
Osher (E-O) scheme was first used in implicit algorithms by Goorjian et al.105 and a similar
implementation is described by Whitlow101, The E-O method is incorporated into the ADI

procedure by modifying the mixed difference operator Dx in eq. (58) to:

= - - —
D fiin; =4, fp A

-

2 ~ ~

A
X2 T X SRPYRETVTRS RPFES YN

(59)

“ A
The f and f operators are given in ref. 101.
In the following, examples of results from the XTRAN2L code will be discussed and

additional modifications to the ADI algorithm will be described. The nonlinear term, ¢x dxx,

leads to the formation of shock waves for transonic speeds which the numerical differencing
solution schemes are designed to capture. Pressures in the vicinity of a shock can vary in a
quite nonlinear fashion with respect to surface motion and the importance of this nonlinearity
in aeroelastic applications is of great interest. Typically, applications of unsteady
aerodynamics involve not the local unsteady pressures but their integrated value, weighted by

shape functions describing surface motion. In 2-D the lift and moment coefficients resuiting
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from airfoil pitching and plunging motions are the relevant airloads. It has been observed that
these airloads behave in a sufficiently "locally linear” manner that linear harmonic analysis

methods are quite useful.

Pulse Transient Unsteady Airload Calculations. If the airload response to surface

motion is sensibly locally linear then airload frequency response functions may be determined
from Fourier transform analysis of transient responses. References 104 and 107 describe the
pulse transient method which is based upon this assumption. Starting from a converged steady
state solution the airfoil boundary condition eq. (37) is prescribed to simulate an exponentially
shaped pulse motion (e.g. pitch).

2
a(t)=ao+a1e""("‘c) (60)

Fast Fourier transforms (FFTs) of the lift and moment coefficients and the angle of attack time

histories are calculated. The lift and moment FFTs are divided by the angle of attack FFT to
obtain the cla and cma frequency response functions. Figure 22108 shows a typical pulse

transient result for the NACA 0010 airfoil at M = 0.78 and ao = 0.0°. The figure shows only
the early portion of the transient to illustrate the fluid dynamics resulting from the pulse.
Calculations are typically continued for ~ 1000 time steps to allow the loads to return to steady
state. Figure 23 shows the resulting airload transfer functions for this case and for similar
thickness NACA 64A010 and parabolic arc airfoils. This figure indicates the degree of
difference in unsteady airloads which results from the nonlinear transonic stéady flow
condition. Figure 24 indicates the correlation between airloads obtained using this method and
the harmonic oscillation method for a six percent parabolic arc airfcil at M = 0.85. The pulse
shape is chosen to give reasonable resuits for reduced frequencies up to k ~ 2.0. Its use gives
considerable detail in the frequency domain from a single transient calculation resulting in a
considerable reduction in cost over the harmonic oscillation method.

In order to obtain accurate results with the pulse method careful attention to numerical
details is required. In order to avoid spurious low frequency results, the starting value of a(t)

in eq. (54) should be equal to ao. For realistic pulse amplitudes, at, W and tc should be chosen

50 that o (0)- 0o = a1 eWlc**2 < 10-6. Also, the method is quite sensitive to lack of

convergence in the starting steady-state solution. Drift in the unforced (a1 = 0) lift coefficient
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of 10-3 - 10-4 can again cause significant low frequency errors.

m i | _Grid Dynamic Eff

The pulse trnasient method has been an effective tool in studying the effect of the
computational grid upon unsteady calculations. Reference 107 uses this pulse transform
technique to demonstrate key features of the relation between computational grids, boundary
ions, and dynamié calculations. The importance of conirolling refiections of disturbances
from the outer grid boundaries and from internal grid points is shown in fig. 25. In order to
compare with linear theory, the case of a flat plate airfoil at M = 0.85 is shown. Three lift
coefficient responses resulting from quickly pitching the airfoil from 0 to 1 degree and back to
0 are given. In figs. 25(a) and 25(c) the default XTRAN2L grid given above was used while in
figure 25(b) an exponentially stretched grid extending +200c in x and +2327c in z was used.

The latter grid contained 113 x 97 points in the x and z directions. The default XTRAN2L

grid107 is 80 x 61 points in x, z and covers a fixed physical domain extent of +20c in x and
+25¢ in z. An algebraic grid stretching is used to distribute grid points between the airfoil and
the outer boundaries. This grid point distribution was selected to alleviate disturbances which
can be generated in regions of large grid stretching. On the airfoil the x-grid has 51 grid points
having a uniform spacing of 0.02c with an additional point near the leading edge. Figure 25(c)
was obtained using the non-reflecting boundary conditions given by Table 3 while figs. 25(a)
and 25(b) utilized reflecting boundary conditions. Of particular importance are the outer
2-boundaries. The disturbance at t = 40 in fig. 25(a) correlates with the acoustic propagation
time for travel to and return from these boundaries. The option of moving these boundaries to
large distances, as in fig. 25(b), introduces the complication of severe grid-stretching in the
near-field. In this case, reflections from the outer boundaries do not occur, but disturbances
seen from t = 20 to 50 correlate with propagation times for travel to and return from regions
of the z-grid where grid spacing first becomes more than two chordlengths. Neither of these

anomalies is seen in fig. 25(c).

Figure 26 gives the cla frequency responses calculated from these transient responses.

Reflections from the outer z-boundary, fig. 26(a), contaminate the unsteady airloads at low
reduced frequencies, k < 0.15, whereas the distrubances originating from the near-field grid
stretching, fig. 26(b), contaminate the airloads in the frequency range 0.2 <k < 1.0. Figure
26(c) shows that exczllent agreement with linear theory can be achieved for moderate

frequencies. Other calculations verify that these features, which are most easily studied for
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linearized examples, carry over to nonlinear transonic calculations. Reference 109 gives

further examples of computational grid effects for unsteady 3-D calculations.

Viscous-Inviscid Interaction. The inviscid TSD equation (56) does not incorporate
viscous effects which can be important for high speed flows. It is possible to account for
unsteady viscous effects by coupling a viscous boundary-layer model with an otherwise inviscid
analysis. As commonly implemented, the inviscid outer flow solution provides the surface
pressure distribution needed to solve the boundary layer equations. This yields the boundary-
layer displacement thickness distribution which is used to modify the airfoil surface tangency

boundary condition for the next iteration of the outer inviscid flow solution.

Howlett10 describes such a method implemented in the XTRAN2L code. The effect of a viscous
boundary layer for attached turbulent flow is modeled in a quasi-steady manner by means of

Green's lag-entrainment equations?11 as implemented by Rizzettal12. In this integral method

the displacement thickness & is computed as a function of the boundary-layer momentum
thickness 6 and the shape factor H:

-
5 = e [ ] H ( 6 1 )
The functions 8 and H are determined together with the entrainment coefficient CE from Green's

lag-entrainment equations. In the nondimensional variables consistent with eq. (56) these

equations are

4@ C 2, .23 9
dx(?)=fl+f2¢xx= ) '(H+2'Mc)8 F‘bxx (62)
e——dﬁ“f +f =(C _HIC dH dH 23 @
cq " e = G Qg I Dgre T (63)
dCE 58 )
.Q.__= - Il 1/2 ) 12

(f
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. dt 1+oam: €

The subscript e in these equations refers to the quantities evaluated at the boundary-layer edge,
the subscript EQ denotes the equilibrium conditions, and the subscript EQO denotes the
equilibrium conditions in the absence of secondary influences on the turbulence structure.
Expressions for the functions contained in egs. (62) - (64) are listed in Appendix A of ref.
100.
lied to each side of the wake
surface independently with the skin friction set to zero and the dissipation scale length doubled
to account for the observed far field behavior of wakes.

Coupling between the boundary-layer and inviscid analysis is through the boundary

conditions on the airfoil and wake, eqs. (37) and (39), which are modified to

¢:=f:+tf+(8‘/80)°: (65)

[0,] = [87/5¢c),] (66)

Coupling between the inviscid analysis and the boundary-layer is through the quasi-steady
pressure gradient, ¢xx, in eqs. (62) - (64). Explicit coupling between the boundary layer and
the inviscid solution is used for the airfoil boundary condition, eq. (65), since this allows a
substantial increase in the allowable time step. That is, the last term in eq. (65) is evaluated

as

*n *n
W1+l 8,1 -9,

1
6 o)y =—7T""""

* 8 Xia N ' (67)
In the next section results calculated with the XTRAN2L TSD code are compared with
experimental results. Results from the interactive viscous-inviscid model will be designated as
IV-TSD
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Two-Dimensional Transonic Calculations

In this section, comparisons of calculated and experimental unsteady pressures are given for
the NACA 64A006 airfoil, the NACA 64A010A airfoil and the NACA 0012 airfoil. The cases are

chosen from the AGARD Standard Configuration Computational Test (CT) cases!8 presented in
refs. 100 and 113.

NACA 64A006. Tests of this airfoil3 all involve oscillation about zero mean angle of a flap
with hinge axis located at three-quarter chord. The steady flow pressure distributions for Mach
numbers from 0.80 to 0.875 are shown in fig. 27. At M = 0.85 the IV-TSD model results agree
well with the data while at M = 0.875 the viscous results correct roughly one-half of the
discrepancy in the inviscid shock location. Post-shock pressure levels are well predicted by

the IV-TSD model. Figure 28 shows the displacement thickness, 8" for these cases. The
thickening of the boundary layer by the shock is apparent for M = 0.85 and 0.875. Figure 29
shows unsteady upper surface pressures at a low reduced frequency, k = 0.06 and at a moderate
reduced frequency, k = 0.24. Figures 30 and 31 show the corresponding airloads for these .
cases. In general, the agreement between experiment and calculations improves with decreasing
Mach numbers and increasing frequency. As for the steady pressures, the unsteady results in
fig. 29 indicate that the IV-TSD mode! accounts for a portion of the discrepancy in the shock
pulse. The airloads show reasonable agreement with the data for the lower Mach numbers with
trends also reasonably predicted. However, with the onset of significant transonic effects at

M = 0.85 it is obvious that further computational improvements are called for. Note, in

particular, that linear theory continues to perform well for these cases.

NACA 64A010A. These cases are for the mode! tested at the NASA Ames Research Centerb2 in

which the model had a small amount of camber and was 10.6 percent thick. These cases are for

the model pitching about the quarter-chord at nominally zero degrees pitch angle. Figure 32
gives the calculated and measured steady pressures for M = 0.5 and 0.796 and the displacement
thickness for these cases is-given in fig. 33. At the lower Mach number, agreement is very good
with almost no viscous effect evident. At the higher Mach number, the viscous results move the
shock forward several percent chord and slightly weaken the shock strength. The data sets
encompass Reynolds numbers variations ranging from 2.5 x 106 to 12.5 x 106 based upon

chord and fig. 33 shows the resulting predicted variation in displacement thickness. Figure 34

shows the upper surface unsteady pressure for M = 0.5 and k = 0.10. There is excellent |
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agreement for this case which is typical of other results for this Mach number. Figure 35
shows upper and lower surface unsteady pressures at M = 0.796 for reduced frequencies from
0.025 to 0.3. Pressure levels ahead of the shock are generally well predicted. The inviscid
shock pulse is too strong and too far aft, with both effects being improved by the IV-TSD medel.
The viscous model also improves the post-shock pressure comparisons. Still, there is again an
evident need for further increases in accuracy in the region of the shock which is also apparent

low values of k only a portion of which is corrected by the viscous model. Similarly, the values

of Re (Cma) at low values of k appear to have an anomalous trend. Trends due to amplitude of

oscillation are well accounted for as is shown in fig. 37. For amplitudes of 0.5, 1.0 and 2.0
degrees, the IV-TSD model very nicely corrects the inviscid shock pulse signature as well as the

post-shock pressures.

NACA 0012. This case invoh}es a 12 percent thick symmetrical airfoil tested with free
transition for sizable mean angles and oscillation amplitudes as well as cases with constant pitch
rate ramping motions to high angles, ref. 18. Results for the latter cases are shown in ref. 113
and demonstrate that the TSD code yields surprisingly good lift coefficient estimates for these
transient ramping motions up to angles near stall, o« ~ 8-10°. Figure 38 presents results for
the former cases, with total lit and pitching moment coefficients plotted versus pitch angle.
The first three cases are for oscillations of 2.5 and 5- degrees about non-zero mean angles while
the last case is for oscillations of 2.5 degrees about a zero mean angle. Agreement for the lift
coefficients varies from good to very good whereas the moment coefffcients for the first three
cases show a systematic difference with experiments due to underprediction of pressures near
the leading edge suction peak in pressure. The characteristic shape of the cm - a curves for the
first three cases is due to a large second harmonic contribution. In contrast, the shape in the
fourth case is due to an increased third harmonic component. Viscous results from the IV-TSD
model are shown for the first and fourth cases. In the first case, viscous effects produce what
appears to be a decreased agreement with experiment. The second and ~third cases were not
amenable to the "direct IV-TSD model described above since they involve incipient separation.

Such cases require an “inverse" boundary layer method to handle mildly separated flows.

Parametric_Studies. A number of parametric studies of transonic 2-D unsteady

aerodynamics have been published. Bland and Edwards?14 investigated the effects of airfoil
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shape for the 10.6 percent thick NACA 64A006 airfoil and the 8.9 percent thick MBB A-3
airfoil. The latter is a supercritical airfoil with significant aft loading. Figure 39 shows the
steady pressure distributions on these airfoils for a range of Mach numbers and fig. 40 shows
the unsteady pressure magnitude and phase angle due to pitching for the same Mach numbers fcr
k = 0.15. It was observed that the frequency response functions of these two airfoils were very
smilar when a Mach number shift of 0.01 was used to account for the thickness difference.
Figure 41 shows this comparison for airfoil pitching. Using this Mach number shift, it was
shown that the two airfoils exhibited similar transonic flutter characteristics for structural

dynamic parameters representative of a swept-back wing section.

The effect of amplitude upon transonic unsteady aerodynamics was also studied!14. Figure
42 shows pressure distributions due to pitching for the NACA 64A010A airfoil at M = 0.7 and (
k = 0.15. For oscillation amplitudes from 0.25 to 2.0° normalized pressures ahead of and
behind the shock are little affected by varying amplitude while the shock pulse is smeared out
with increasing amplitude. Note, however, that the area under the shock puise remains nearly
constant, lending further credibility to the use of locally linear analysis methods. Howlett!10
also investigated amplitude effects with his interactive viscous boundary-layer method and
found no significant nonlinear effect for a moderate transonic case. Figure 43 shows lift due to
pitch for the NACA 64A010A airfoil at M = 0.796 for 0.1 and 4.0 deg. pitching amplitude.
Batina108 investigated the effects of airfoil shape, thickness and angle-of-attack using the

XTRAN2L code. As a reference, fig. 44 ines the linear cma frequency response function at M =

0.80 (linearized aerodynamics and flat plate airfoil). Shape effects were investigated using
three 10 percent thick airfoils; the NACA 0010, the NACA 64A010 and a parabolic arc airfoil.
Figure 45 shows steady pressures for M = 0.76, 0.78 and 0.80. Note the formation of shocks Q

near the locations of maximum thicknesses at 30, 40 and 50 percent chord. Figure 46 gives the

cma frequency responses for these cases. Comparing figs. 44 and 46 two transonic features are

apparent. First, the development of nonzero values for Re (cma) at k = 0 with increasing Mach

number reflects the aft shift of the steady center of pressure for the NACA 64A010 and
parabolic arc airfoils. Secondly, the "wave" feature, seen most prorﬁinently in both the real and
imaginary responses near k = 0.6 for M = 0.78, is novel. It is apparently independent of

airfoil shape and occurs at lower reduced frequency for higher Mach number.

Reference 108 also studied airfoil thickness effects. In steady flow, we have a transonic

similarly rule83 whereby similar airfoils with equal similarity parameters
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. 1-M?
= " 3 (68)
8¢y + DM
have equal scaled pressure coefficienis
* 2.2/3
C + )M
pltr + DM = const. (69)
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Figure 47 shows such scaled steady pressures at three similarity scaled Mach numbers for the
NACA 0008, NACA 0010 and NACA 0012 airfoils. The similarily parameter values gi =

1.4749, 1.3270 and 1.1851 lead to, for example, Mi = 0.76, 0.78 and 0.80 for the NACA
0010 airfoil. The corresponding cma frequency responses are given in fig. 48. Although no

similarity rule is available for the unsteady case, it is interesting to note that, for low and high
frequencies, these scaled airfoils behave quite similarly. In contrast, the wave feature which
will be identified with "aerodynamic resonance" below does not scale according to eq. (68).

Reference 1 points out that such resonances are related to the shock motion types identified by
Tildeman. Figure 49 shows cm$ frequency responses for the NACA 64A006 airfoil for the two
Mach numbers at which type B and C shock motions have been calculated (fig. 19) for the
frequencies denoted by the symbols. The type B motion corresponds to. the resonance frequency
of the aerodynamic resonance feature (the maximum amplitude of Im (cms) for this case) at
M = 0.854 whereas the type C shock motion frequency is below the M = 0.822 resonance
frequency.

Finally, Edwards et al.115 present parameter studies of 2-D transonic flutter
characteristics. The effects of airfoil shape and angle-of-attack are noted and detailed results
for a variety of structural dynamic integration methods are shown. Effects of motion amplitude

and time step size are also noted.

Shock Generated Entropy

Thus far, transonic unsteady aerodynamic calculations have been presented which
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demonstrate the capability of the TSD potential equation to capture nonlinear shock waves and to
predict trends for transonic unsteady airloads. An evaluation of figures 29 - 38 indicates that
such computations are not accurate enough to displace linear theory. Augmentations to the basic
TSD equation and/or resorting to higher equation levels are called for. In this section a
significant augmentation to the TSD equation is described.

The conservative full potential and transonic small disturbahce potential equations are
derived with the assumptions that the flow is irrotational and isentropic. While it is recognized
that entropy is generated within shock-waves, the use of potential theories to study transonic
flows with weak shocks has progressed assuming that this entropy generation was a higher
order effect. 1t is now understood that disregarding this effect can lead to serious disagreement
with more exact solutions for physically interesting situations.

A common approximation in formulating the full potential equations is to impose

conservation of mass and energy while satisfying the isentropic and irrotationality

conditions116. Reference 116 shows that the shock jump conditions for such a "conservative
potential” equation deviate from the Rankine-Hugoniot shock conditions as the Mach number

ahead of the shock increases. In ref. 116, the implications of this effect were studied by

calculating ci versus o for a range of Mach numbers. It was known117 that the symmetric NACA
0012 airfoil at o = 0° exhibited multiple solutions for 0.82 < M < 0.85. Figure 50 shows that

such ranges of multiple slutions can be found for all Mach numbers for sufficiently large angles
of-attack. More importantly for transonic aeroelasticity, it is concluded that well before a

reaches values at which multiple solutions occur, the lift-curve slope, cla, can become
unphysically large.
Williams et al.118 have investigated the effect of nonunique solutions of the unsteady TSD

equation. Figure 51118 gives three different calculations of lift coefficient versus o for the
NACA 0012 airfoil at M = 0.85. Figure 51(a) gives the upper surface pressure distributions
for the three multiple solutions indicated by A, B, and C in fig. 51(b). Solution B is a

symmetric nonlifting solution while the other two are lifting solutions. Figure 51(b) gives the
lift coetficient versus angle-of-attack for 1.) Quasi-steady conditons, k = 0, and pitching '
oscillations for 2.) k = 0.01 and 3.) k = 0.05. Solution B is not a stable solution and diverges
with an extremely large time constant to either A or C depending upon initial conditions. Atk =
0.05 the solution oscillates about the positive lifting solution. While the average lift curve
slope is not unreasonable the solution must be regarded as anomalous. In contrast, the solution

for k = 0.01 exhibits a hysteresis loop, jumping between the two stable steady solutions. The
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large phase lage implied by this slution is unphysical and caution must be exercised against such
calculations.

Fuglsang and Williams!19 implemented a nonisentropic formulation for the 2-D TSD

equation. In the 2-D form of eq. (30) the streamwise flux may be written as

- . .2 1 _ 2
I=U.-M)u--2—bu (70)

where u = ¢x. The coefficient B may be chosen in a variety of ways but should be asymptotic to

(y + 1) as M approaches unity. Reference 119 replaced eq. (70) with

2 . V2
f=@+ MRV -—) (71)

where

u
V= 1 +u/(1 +R)

and asterisked quantities refer to sonic conditions. This new flux is identical to that of eq. (70)

to O(u2) when u is small. The new form is derived from a formal asymptotic expansion of the
Euler equations, including the effect of shock-generated entropy. A modified pressure
coefficient to account for this entropy and a modified wake boundary condition to account for

entropy convection complete the nonisentropic modeling. The pressure coefficient is modeled as

CP=CH+CP’ : (72)



where
C,=-2(9.-9) (73)

is the linear isentropic term and cps is the correction due to the entropy jump

2(s- sm)/cv
y(y+ DM’

. (74)

The entropy jump is evaluated using the computed velocity upstream of the shock and the

Rankine-Hugoniot normal shock jump condition

28 i )
C

v er-1 (75)

where

e=(y+DIY-1)

The wake boundary condition, eq. (38), is modified to account for the entropy as

1
[¢X+¢l]=-2_[cp,] (76)

The entropy is assumed to be convected down the wake at the freestream speed leading to
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Figure 52 shows isentropic and nonisentropic results compared to Euler and full potential
results for M = 0.84 and a = 0.25. The nonisentropic results are very similar to the Euler
results. No mulitple solution conditions have been observed with the nonisentropic model and

values of lift-curve slope are reasonable. Also, low frequency unsteady calculations do not

exhibit the hysteresis effect shown in fig. 51(b)?19.

TSD Potential Equation, 3-D
The success of the AD! solution algorithm in enabling efficient 2-D calculations led to its

extension to 3-D in the XTRAN3S28,29 code. In this code, the physical grid lines in the x, y
plane conform to the wing planform and the grid is extended in regions off of the wing planform

using a shearing transformation to map onto a rectangular computational domain:
E=E(x,y, n=y, {=z 7T=t (78)

In computational! space eq. (30) becomes!20

20 1 _ 0 2 2 .2 2,2 2
M -51-[-§_¢‘+2¢5]—5§—[(1 -M )ﬁ,ﬂ)é + Fg, ¢§+G§y¢§+20§y ¢§ ¢n+G¢n

g, | 3 1
+ i_ &, 0 +0)+ HE O &, b+ 01+ g [E- &, ¢, +0) +Ho, &, ¢, +0.)]

X X

LRI (79)

o &, 3

The time-accurate solution of eq. (79) via the AD! algorithm is summarized by Borland and

Rizzetta29:;
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where 8¢, 8n, 8¢ are second-order accurate central difference operators, & is a first-order
backward difference operator, Dg is a mixed-difference operator based on the

signof  (a" +2b q)g) and Dy is a mixed-difference operator based on the signof 2 G, (8n ¢“).

Thus numerical stability is maintained using Murman-Cole differencing. Expressions for a, b,

X and Y are given in ref. 29. This algorithm is used to advance the solution for ¢ from time t to
time t + At (i.e. " to ¢n+1). All of the terms contributing to the streamwise portion of the

equation are treated implicitly, as well as the second difference 3n (cdn¢) and cd¢g ¢. The

remaining cross terms contained in the expressions for X and Y are handled in an explicit
manner. Because of this there is an inherent time step limitation for stability of the 3-D
method not present for fully implicit methods such as the 2-D AD! method of ref. 14.

A comparison of calculations from the XTRAN3S code with experimental data from a
rectangular supercritical wing oscillated in pitch is given in ref. 109. Figure 53(a) shows

steady pressures for two span stations at M = 0.7 and a = 2°. For this low transonic condition,
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the agreement wuth experiment is good except near the leading edge. The unsteady results in fig.
53(b) are in good agreement with experiment over most of the chord. Inboard, there is an
improvement in the prediction of the leading edge suction peak over the linear RHOIV result.

Outboard, there is evidence of viscous effects in the phase angle in the aft cove region.

Modified Grid Transiormati The semi-implicit ADI algorithm used in the XTRAN3S code

required increasingly small time steps to maintain stability as wing sweep and/or taper were

increased. Guruswamy and Goorjian121 modified the original grid shearing transformation, eq.
(20), which resulted in highly skewed outer grid boundaries for such cases. The modified
from a rectanguiar physicai domain onto a rectangular computational
domain while maintaining the alignment of the grid with the wing planform. Reference 120
describes the details of a similar transformation method. In regions upstream and downstream
of the leading- and trailing-edges and their extensions, the grid spacing is given by a cubic
shearing function, which for the upstream region is

. 3. .
x.lu=xLE+A11u+A31u, L=1o,i, (81)

The coefficients A1 and A3 are selected!20 to enforce smooth grid metrics for the grid cells

adjacent to the wing. Outboard of the wingtip the leading and trailing edges are extended using
similar cubic functions that match the leading and trailing edge slopes at the tip and intersect
the far spanwise boundary perpendicularly. Various combinations of spanwise grid point
spacing have been studied. Both uniform and cosine-distributions on the lifting surface and
uniform and stretched distributions outboard of the wingtip have been used. Figure 54 indicates
the grid distribution for the case studied in ref. 120, the RAE tailplane model which was tested
for pitching oscillations. It has a leading edge sweep angle of 50.2 deg., a taper ratio of 0.27 and
a 10 percent thick NACA 64A010 section profile. Figure 55 shows comparisons of steady
pressures for M = 0.80. The agreement is reasonable for the inboard stations. However, the
agreement deteriorates at the outboard stations and the pressure expansion over the forward
portion of the wing is generally underpredicted. The unsteady pressures for this case with K =
0.490, fig. 56, show good agreement between calculated and measured trends and again
deteriorating agreement outboard.

The grids used for the calculations shown in figs. 53-56 contained 60 x 20 x 40 points in
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the x, y and z directions for a total of 48,000 points. This is considered to be a medium-to-
coarse grid and 5-6 times this number of grid points appear to be required to insure accurate
calculations for a single lifting surface. In terms of computational efficiency, ref. 29 indicates
a machine speed of 83 ps. per grid point per time step for a CDC 7600 computer.

Shock-Generated Entropy. Gibbons et al.122 modified the XTRAN3S code to account for
shock-generated entropy in a manner similar to ref. 119. The streamwise flux, eq. (31), is
replaced by

£, =+ DMR (VV - V2) + Go, | (82)

and the pressure and wake condition modified as in eqs. 72-77. Reference 122 indicates that
for a 3-D rectangular wing multiple solutions occur for aspect ratios greater than 24. For -
more reasonable aspect ratios, unacceptable solutions can be calculated if entropy generation is
not taken into account. Figure 57 shows such a case wherein the unmodified code predicts a lift-
curve slope twice as large as the modified code which is in agreement with an independent Euler
equation calculation. Reference 122 also discusses implementation of Engquist-Osher monotone
ditferencing in the XTRANS3S code. This resulted in improvement in calculated pressures near
shocks. Figures 58 and 59 show original and modified XTRAN3S steady and unsteady pressures
for the RAE tailplane model at M = 0.90 and k = 0.44. The entropy modifications result in 5-
10 percent chord farward shifts of the shock and shock pulse in the outboard wing region.

Treatment of Realistic_Confiqurations

All results presented thus far have dealt with unsteady aerodynamics for isolated lifting
surfaces. In order to realize necessary improvements over existing aeroelastic analysis
methods, computational methods are required to provide reliable predictions for complex

configurations.

Multiple Lifting Surface Interference - Batinal23 extended the ADI algorithm of the
XTRAN3S code to allow two lifting surfaces. Figure 60 illustrates a case of canard-wing
interference iq which unsteady loads are induced on the wing by the oscillating canard. This
effect is obviously a function of the separation distance between the surfaces, the Mach number
and the frequency.
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Wing-Fusel Interference - Batinal24.85 has also implemented modifications to the TSD

equation to treat wing-fuselage interference. For a body at angle of attack ab and at yaw angle

Bb, the exact flow tangency boundary condition may be written as124
N+ N (L+0)+N, (0, +B) + N, (6, +0q) =0 (83)

where N(x, y, z, 1) = 0 defines the body surface. Computationally, bodies are modeled by
applying simplified boundary conditons on a prismatic surface rather than on the true surface
as shown in fig. 61. This method is consistent with the small-disturbance approximation and
treats bodies with sufficient accuracy to obtain the correct global effect on the flow field without
the use of special grids or complicated coordinate transformations. The appropriate boundary

conditons imposed on the computational surface are

Upstream face: ¢x =V e~ 1 (84a)
Downstream face: ¢x = Vem -1 ) (84Db)
Nx Nt
Left/right faces: ¢y =C, [N— +ﬁ—] - CaBb (84c)
y y '

Top/bottom f C [N" ! (84d)
op/bottom faces: o =- 2+
z t Nz Nz

where Viniet and Vexit are inlet and exit flow velocities, respectively, specified in the case of a
nacelle. The parameters Ct and Ca are thickness and angle-of-attack corrections derived from

slender body theory to account for the differences between the true and computational body
surfaces.

Figure 62124 gives results from these modifications to the XTRANS3S code for the RAE wing-
fuselage tested at M = 0.90 and a = 1°. Results for the wing-alone case, not shown, indicate

that fuselage effects are similar to the results shown for M = 0.91. Figure 63 shows the
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calculated interference  effect for this configuration for an assumed wing bending mode. The
interference effect on the integrated generalized force, important for aeroelastic analysis is
approximately 5 percent of the total.

roximate-F rization of the TSD Equation
The numerical stability restrictions of the ADI solution method for the 3-D TSD equation
(29) have limited its applications for transonic unsteady calculations. An alternative solution
algorithm84, termed an approximate-factorization (AF) method, has shown much improved
stability characteristics. This AF method involves a local time linearization procedure coupled
with a Newton iteration technique which is based upon the work of Shankar et al.125 who applied
the method to the full potential equation. It is formulated by first approximating the time

derivative terms (¢tt and oxt) in eq. (30) by second-order accurate formulae, followed by the
substitution of ¢ = ¢* + A6 and the neglect of squares of derivatives of A¢. In this method, ¢” is

the current estimate of ¢"+1 which will be converged to the true potential ¢n+1 thus driving A¢

to zero. Performing these operations and summing terms results in

2A 3B ) . .
= Ad + — A9, - == (EAQ, +2F 6, Ag, +2Go, Ad,)

2

) d » * ) 2¢"_5¢n+4¢n-1_¢n-
3 (80, + HO, A0, + HO 80) - = (49,) =- A =

a * #2 t2 a * * ok a »
+ax EOFFOT+G 00+ (0, + HO0) + - (0)

b n n-1
B 39, -40 + ¢,
2At
(85)

The right hand side is simply the TSD equation which may be evaluated using known potentials

- . . . ear !

o°, ¢N, 6n-1, and ¢n-2. Transforming to computational coordinates, rewriting eq. (85) in
conservation form and approximately factoring the left hand side into a triple product of
operators yiélds

(



where

51

L L Ab=- * n, n-l, n-2 86
ELHQCP R@®.,¢,0 ,0 ) (86)
2
3B 0 At” 9 )
= —_— ¢E — —F. — 87
LE_1+4A§"At X 2A Ae Fl'\r. (87a)
vs vy
L =1-& ﬁt--a—in (87b)
n "ZAan on
Al 3 _ 9
L=1-g 80209 (87¢)

-
-

2.0%. * - iy . - -
Fy = BL, + 25,0, + 268, (6,0, + 00+ 2 (L HE 0 4 HE, €, 6,40

X

(87d)
1 . ‘
F2=E—(1+H§x¢€) (87e)
1
F3=€ (871)
At2 A 2¢*_5¢n+4¢n-1_¢n-2 3¢¢_4¢n+¢n-1
R='E’x2—A’ (= - Bt Yt 'k
g, At 2At

a * 2. %2 | * * 2 EV - * - * -
o BB FLO OO0+ 007 22 € 00w 0]+ HE,07 6,0] )]

X



(0)]

a 1 * » * * * 8 1 »* .
+ —[— @0, + Ho, 0] +—[—0,])
ey 5,9, + 0 +Ho, € 0.+ 0] + = " (87g)

Equation (86) is in the form of Newton's method for the solution of the nonlinear system of

equations

n+l

R@ )=0 (88)

which is given by

n+ * oR n+ *
RO™H=R@)+CD) . 0" -¢)=0 (89)
-a¢ =0
or

=01 RO | (90)
op 9=9

By iteratively solving (90), A¢ will approach zero so that ¢n+1 = ¢". In general, only one or

two iterations are required to achieve acceptable accuracy since the Newton iteration process is

quadratically convergent. Equation (86) is solved using three sweeps through the grid by

sequentially applying the operators Lg, Ly, and Lg as

& - sweep: L.Ad=-R (91a)

n - sweep: L A&)_-:A.d; (91b)
n .
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¢ - sweep: LCA¢=Aq=> | (91c)

Central difference formulas are employed for all of the derivatives on the left-hand side of

eqs. (91) except for the second term in the L& operator (from the ¢xt term) which is backward

differenced to maintain stability and the third term in the Lz operator which is split into

streamwise and spanwise components. The resulting terms are centrally differenced at subsonic
points a‘nd the streamwise terms are upwind-biased at supersonic points using the Murman-
Cole type dependent mixed difference operator. The terms on the right hand side of the &-sweep
are also approximated using central-difference operators except for the ¢xt term which is
backward differenced and for terms in the streamwise directior. which are upwind biased at

supersonic points. Since the Lg, Ly, and L operators only contain derivatives in their

respective coordinate directions, all three sweeps may be vectorized. Finally, ref. 126
describes two additional improvements to the algorithm: second-order accurate supersonic
differencing for improved accuracy and Engquist-Osher monotone differencing which again
enhances stability.

Figures 64 and 65, from ref. 125, compare results from the XTRAN3S ADI code and the AF
algorithm for the F-5 wing model. Figure 64 compares steady pressures at M = 0.9 and a = 0°
while fig. 65 compares unsteady upper surface pressures for k = 0.137. Results from the two
algorithms agree, as they should, and they also are in very good agreement with experiment.
The AF algorithm is also capable of calculating supersonic freestream conditons. Figure 66
gives an example of unsteady lower surface pressures for the F-5 model at M = 1.1 showing
good comparison with experiment for this relatively low supersonic case.

The AF algorithm is implemented in a computer code termed CAP-TSD (Computational
Aeroelasticity Program - Transonic Small Disturbance) developed at NASA Langley Research

Center84. The code permits the aeroelastic analysis of complete aircraft through the modeling
of multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers,
pylons, fuselage, stores and nacelles. Reference 84 presents results for five configurations
ilustrating this capability. Figure 67 indicates the modeling of a General Dynamics F-16C
aircraft model using four lifting surface and two bodies. Figure 68 compares calculated and
measured st-eady pressures for this model at M = 0.9 and a = 2.38°. The. agreement is

considered very good. In fig. 69, calculated unsteady pressures for the_complete aircraft and for
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the wing-alone are compared for the case of rigid pitching oscillations for k = 0.1. There is a
general lack of unsteady experimental data for complex covnfigurations with which to validate
such computations. The grid used for these calculations contained 324,000 points. The
calculations required 0.88 CPU seconds per time step or 2.7 us. per grid point per time step on
the CDC VPS-32 computer. Thirteen million words of memory was required.

A primary application of unsteady aerodynamics for lifting surfaces is the calculation ‘of
aeroelastic response; that is, the response of elastic structures interacting with the
aerodynamic loading. The integrity of the structure must be insured under all possible
operating conditions and thus the prediction of instability, or flutter, boundaries is required.
Reference 127 describes such calculations for a proposed AGARD standard aeroelastic flutter
model configuration. This 45° sweptback wing with a taper ratio of 0.66 is shown in fig. 70. A
finite element structural dynamic model provides normal vibration mode shapes, frequencies
and generalized masses required for a flutter analysis. These uncoupled modal equations of

motion are implemented in the CAP-TSD code and time-accurate transient response calculations

obtained127.

Figure 71 shows the mode shapes of the four lowest frequency modes used in the analysis.
Transient responses for values of dynamic pressure below and above the flutter boundary are
processed to obtain the frequency and damping of the aerodynamically coupled modal responses.

Figure 72 compares experimental and computed flutter boundaries for Mach numbers from

0.338 to 1.141. Figure 72(a) shows the flutter speed index, U/boa Vu, and fig. 72(b) the

frequency ratio, w/wq, of the flutter mode, where wa is the first torsion mode wind-off

frequency. For this 4 percent thick wing, transonic effects are delayed to high subsonic Mach
numbers and linear theory results from both CAP-TSD and a kernel function program, are in
very good agreement with experiment up to M = 0.98. The three nonlinear CAP-TSD subsonic
flutter calculations better agree with experiment than the linear theory, particularly for the
change in slope of the flutter boundary near M = 0.95. Note the excellent prediction of the

supersonic "backside" of the flutter dip.

Unsteady Potential Equation

The length of the previous sections dealing with solution methods and modifications for the
unsteady TSD potential equation reflects the large amount of effort which has been expended
upon this equation level. Fewer results are available for the higher equation levels. However,

as work on the TSD equation has obviously matured, an acceleration of work on the potential
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equation, and the Euler and Navier-Stokes equations is evident. In this and the remaining

sections, key algorithms and results for these fluid dynamic models will be summarized. The
major issues to be addressed involve computational grids and increased problem size. All of the
fluid dynamic flow models above the TSD equation require solutions to be obtained upon the

actual body surface, which is usually accomplished with a body conforming grid. For problems

involving body motion, such grids probably need to be moved aiong wiih the body.

e 2-D unsteady potential equation, eq. (23), is solved in ref. 82 using an approximate

Th
linearized about previous time levels

factorization algorithm. The time derivative of density is

such that conservation form is maintained and the resulting equation becomes

(92)

L L AD=F
S

where
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The terms A1 and A3 are metric terms, & and & are central difference operators and
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ux-biasing!28 to stabilize the numerical scheme. The

c -4

Reference 82 uses the concept of fl
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spatial terms on the right hand side of eq. (92) are centrally differenced about node (i, j) to

give

pU. _ pU U
8& (T)id = (T)i+1/2.j } (T)i-l/z.j (93a)
Sg (PW);;= ®W)ijer2 - ®W)ijan : (93b)

The biased density in the & direction is defined as

~

1 . .
Pinj =g - [Pq - (PQ);,ypp; + (PQ); 40 )
1+ o}

where

(P9 =pg-p q q>q

0 q=<q

This flux biasing has the effect of introducing artificial viscosity in supersonic regions which is
necessary to capture shocks. Although it is generally necessary to bias the density in both
computational directions, ref. 82 found that biasing only the & direction was satisfactory.
Reference 128 explores the connections between this flux biasing and the Murman-Cole and
Engquist-Osher differencing schemes.

The flux-biasing solution method has the following desirable features: (a) it accurately
tracks sonic conditons and requires no empirical constants to specify the amount of artificial
viscosity, (b) it produces no velocity overshoots at shock waves, allovs)ing for larger time steps
for unsteady calculations, (c) it produces well-defined, monotone shock profiles with a
maximum two point transition between upstream and downstream states, and (d) it dissipates

expansion shock waves, ruling out solutions with such nonphysical characteristics. Shankar et

al.130 have also used flux-biased differencing in unsteady potential equation calculations.




Reference 82 also presents an entropy correction method to account for shock generated

entropy. The correction consists of replacing the isentropic density by a nonisentropic density

P=pie -As/R (84)
where the entropy jump As is a function of the Mach number normal to the shock. The

nonisentropic pressure coefficient is given by

C == (™R
) 3 YA :

™

- 1] (95)
\v vy

and, as for the TSD equation nonisentropic modifications, the entropy jump is convected along
the wake downstream of the trailing edge.
Treatment of moving, body conforming grids has been handled in several different manners.

For 2-D airfoil sections and 3-D rigid wings, a single grid generated for a nominal body

orientation may be calculated. Rotations and translations of the entire grid8! can then be used to
track the motion of such bodies. An alternative is to calculate two grids for the extremes of body

motion and linearly interpolate grid point locations for intermediate body orientations26.

Figure 7382 illustrates this latter method showing calculated grids for 0° and 45° and
interpolated grids for 15 deg. and 30 deg. The large amplitudes of this examples serve to
demonstrate the method. The double wake grid line for these potential-equation applicatons is
shown opened for clarity. For the potential equation, the location of this wake cut is important
since it defines the path taken by the convected vorticity. Reference 131 studies the effect of
using linear, quadratic and cubic curves to define the wake cut and shows a singificant effect
upon calculated lift results.

Figure 74, from ref. 82, shows isentropic and nonisentropic potential equation calculations
for the NACA 0012 airfoil oscillating in pitch at M = 0.755 and for a(t) = 0.016° + 2.51° sin
(kt) where k = 0.814. The effects of the entropy corrections are to weaken the shock and move
it forward, in bettter agreement with the experimental data. At points in the cycle where the
shocks become strong, the measured pressures immediately behind the shocks show the effects
of boundary layer thickening, which is not included in these inviscid calculations. Reference

129 gives further examples of potential equation calculations for the AGARD Standard
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Configurations.

Euler and Navier-Stokes Equations

Since the Euler equations, (14), may be obtained from the Navier-Stokes equations by

A
deleting viscous terms such as Hv in eq. (1), solution algorithms for both equations sets may be

discussed together. Edwards and Thomas! survey methods which have been used.

The time-dependent Euler equations form a hyperbolic system of equations, and much of the

recent progress in algorithm development132-137 has hinged upon the incorporation of the
signal propagation features of the differential equation into the numerical algorithm. There are
several methods of incorporating this information into a difference scheme, for example flux-
vector-splitting or flux- difference-splitting, and an excellent review of the curr;ent
developments in the field is given by Roe in Ref. 138. The advantages of incorporating an
upwind-biased discretization into a numerical algorithm are twofold: (1) the scheme becomes
naturally dissipative so that no adjustable constants need to be fine-tuned to a particular
application and (2) improved implicit schemes can be devised for more efficient solution to
both steady and time-dependent problems. Both of these advantages offset the disadvantage that
approximately twice as many operations per time step are required to implement an upwind
scheme as opposed to a central difference scheme.

Most of the calculations made to date with upwind difference schemes, especially for
airfoils/wings, have been steady-state applications, for which comparable accuracy can be
obtained by central difference methods with added artificial viscosity. The advantages of upwind

differencing should be more significant for time-dependent problems, however, where the

ability to treat rapid movement of flows with shocks is required.- Roe138 gives several
examples of shock-propagation computations in two-dimensions which demonstrate clearly the
advantages of a characteristic-based scheme. Viscous effects can also be readily introduced into

upwin_d difference schemes developed for the Euler equations by central differencing the shear
stress/heat transfer terms139,140,

The time-accurate computations made by Steger and Bailey25 and Chyu et al.26.27 used a
spatially-split approximate-factorization (ADI) scheme, which is unconditionally stable in two
dimensions but at most conditionally stable in three dimensions. Alternate factorizations are
possible with the incorporation of an upwind difference discretization in one or more coordinate

directions which can lead to unconditionally stable 3-D algorithms132. A two-factor eigenvalue

split scheme for the Euler equations has an increased stability limit and fewer operations than
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the spatially-split scheme, although the operations are not completely vectorizable. Belk42
computed steady and time-dependent inviscid flows for the NASA RSW model with such an

algorithm in combination with a blocked-grid strategy. Ying et al.142 used upwind differences
in a single coordinate direction and constructed a two-factor unconditionally stable algorithm
for which thin-layer viscous effects are readily incorporated. Applications of the thin-layer
Navier-Stokes equations to the high-angle-of-attack unsteady flow over a hemisphere-cylinder
are made!42. Severai of these ailernate faciorizations are investigated in the context of
efficient algorithms for three-dimensional steady-state problems by Anderson et al.143,144,
The use of multigrid techniques to accelerate convergence to the steady-state is becoming
widespread in the aerodynamic community. These techniques can also be used for time-
dependent flows. For instance, multigrid techniques could be used to efficiently solve the large

banded matrix equations arising from implicit time discretizations, the solution of which is

generally approximated through relaxation and/or factorization methods. Jesperson145 has
demonstrated a time-accurate multiple grid procedure which was used to overcome the small
timestep limitation of an explicit scheme. With the growing memory of today's computers (the
Numerical Aerodynamic Simulator has 256 million words of memory) it becomes feasible to
solve the banded matrices by direct Gaussian elimination, rather than by approximate
techniques. The structure of future implicit algorithms for both steady and time-dependent
problems will likely involve a multiple grid algorithm with direct elimination techniques used

on the coarser grid levels.
Anderson et al.81 implement the solution to Euler equations for a moving grid, eq. (14),
using flux vector splitting with upwind differencing. An iterative Newton linearization is used

to advance the solution in time similarly to egs. (88) - (89). That is, eq. (1) is reformulated
as

AAn+l
L(Q ) =0 (96)

where the form of the operator is

A A
1+9 Q" +2Q7
At

n+l

A
Ju)
[ +5)Q
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A A A A A A
[BF +8F +5,G +5,G + 3 +8,H "' =0 (97)

If ¢ = 0, the scheme is first order accurate in time while if ¢ = 1, the scheme is temporally
second order accurate. Conditions required for the split flux terms in eq. (97) are given in ref.
81. Equation (96) is a nonlinear equation which can be solved iteratively by Newton

linearization
oL Anp A
%@ - =-1@ (98)

where 1 is a sequence of iterates and at convergence, Q|+1 - Q‘ =0, Q' C‘:"**1 A spatially-split
approximate factorization scheme is used to solve (90) in three sweeps in each coordinate

direction

[+ Q) + AtséA + AtB ]AQ = AtL(Q )
A A A
[ * e ASTBIA0 T = 1+ 920"
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- Nuw
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Q =Q +AQ
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where A%, B, C* correspond to Jacobean matrices of Ft, G*, Ht respectively.

Figures 75 and 76 from ref. 81, show calculations for the pitching NACA0012 airfoil for
the same conditions as in figures 37(d) and (73). The computations were obtained on a 193 x
33 C-grid using a time step of 0.10. Figure 75 compares results from two alternative splitting
methods; flux vector splitting, FVS, and flux difference splitting, FDS. The comparison of both
of the euler equation results with experiment is very good e*cept near the base of strong shocks.

Reference 146 presents the Euler equations in a formulation wherein the fluid dynamic

equations are developed for a coordinate system rigidly attached to the translating and rotating
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body. Solutions for two-dimensional oscillating airfoil problems are obtained using an implicit
approximate factorization method with artificial dissipation. Results for the oscillating
NACAO0012 airfoil are shown in figs. 77 and 78. A C-grid with 128 x 64 cells was used for
these calculations. Comparing figs. 38(d), 76, and 77 indicates that the two Euier equation
results appear to be converged while the TSD solution indicates the magnitude 1o be expected
from viscous effects. _

Reference 146 also presents results for unsteady locally conical flow about a sharp-edged
delta wing in supersonic flow for rolling oscillation about zero angle of attack. Figure 79 shows
the spanwise pressure distribution at four instants during a cycle of oscillation for M = 2 and k

= pc/U = 1.337. The formation of the leading edge vortex and its migration

LY A Het=1 R

are clearly evident
as is the phase lag of the pressure loading.

The final example of Euler equation calculations to be presented is from the flux-vector
splitting scheme of ref. 81. Figures 80 and 81 show steady and unsteady pressures for the F-5
wing model oscillating in pitch. Figure 80 presents comparisons with experimental steady
pressures for Mach numbers from 0.90 to 1.328. Agreement is very good to excellent except
near the strong shock at M = 0.95. Unsteady pressure comparisons, fig. 81, for M = 0.95 and
1.32 show very good agreement in pressure levels. There are generally insufficient data to
resolve the shock pulses near the leading and trailing edges at M = 0.95. These calculations
were obtained on a 129 x 33 x 33 C-H mesh. A time step of 0.05 was used requiring
approximately 240 time steps per cycle of oscillation.

The retention of viscous terms leads back to the Navier-Stokes equations represented by egs.
(1) - (13). The detailed viscous flow modeling of which this equation set is capable makes it
appropriate for the study of viscous dominated unsteady flows charactérized in fig. 3 as type i
and type Ill. They may aso be used in the calibration of lower equation level flow models for

appropriate classes of unsteady fows such as type | attached flow.

Steger and Bailey25 provided an early computational demonstration of the use of CFD
methods in aeroelasticity. They studied a case of aileron buzz for the P-80 aircraft which had
been tested in a wind tunnel. Aileron buzz is a one-degree-of-freedom aeroelastic instability,
usually of limited amplitude, which may be encountered for transonic flow conditions. They
implemented the Beam-Warming implicit Approximate Factorization (AF) solution algorithm,
using an algebraic eddy viscosity turbulence model. A novel treatment of the computational grid
was used to follow the aileron motion with a conforming grid. A simple shearing transformation

in the coordinate normal to the aileron was used.
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Figure 982shows the limit amplitude "aileron buzz" oscillation which was calculated for M

- 0.82, Re = 20 x 106 and a = -1. The calculation was initiated with a 4 degree aileron offset.
This and other calculations successfully reproduced the experimental buzz boundary. The
computed reduced frequency was k = 0.38. The shock motion obsarved in the calculations was
type B, and type Ii intermittent fow separation is shown in ref. 25. The code was.capable of
being run in an inviscid mode (EE mode) and several such calculations were made. Below M =
0.84 the aileron exhibited damped oscillations of about k = 0.36 whereas divergent oscillations
(k = 0.39) were calculated at M = 0.84. Hence the tendency to oscillate at a given frequency
derives from the inviscid flow equations while the viscosity apparently plays the key role of
limiting the amplitude of oscillation. These calculations were performed on a 76 x 42 grid and
required approximately 1.5 sec of CDC 7600 computer time per time step or 460 ps. per grid
point per iteration. Nondimensional time steps of 0.005 - 0.01 were used (based on chord).

Chyu and his coworkers26.27 used this same method along with the grid interpolation |
method described above to study the moderate shock case26 and the shock-induced separation

case27 for pitching oscillations of the NACA 64A010A airfoil shown in figs. 83 and 84.
Comparison of the interactive viscous-TSD (IV-TSD) results of fig. 35 with the Navier-Stokes
results of fig. 83 is instructive. The two sets of calculations are in very good agreement for this
type | flow condition. As for the type Il - lll flow condition shown in fig. 84, note that the full
and thin-layer Navier-Stokes results show no significant ditferences except near the shock
where the difference is not large. Thus the thin-layer Navier-Stokes equation appear to be
viable for this class of unsteady flow problem. These calculations were obtained on a 139 x 49
C-grid using 2620 steps per cycle of oscillation and the time per step on the CRAY X-MP
computer was: full NS, 0.33 sec; TL-NS, 0.17 sec; EE, 0.17 sec, corresponding to 25 - 44
usec. per grid point per time step.

Rumsey and Anderson?8 describe an extension of the flux-vector split, approximate
factorization upwind scheme described in egs. (96) - (98) to the 2-D thin-layer Navier-
Stokes equations. This method is developed for body conforming moving grid systems and is
given in eqs. (1) - (13). Figure 85 gives their solution for the oscillating NACA 0012 airfoil
at M = 0.6 and k = 0.081. This case has already been presented for IV-TSD calculations in fig.
38(c) and for EE calculations in fig. 78. Figure 85 shows the effect of grid refinement
indicating little change in going from a 129 x 29 g}id to a 257 x 97 grid. The EE and TL-NS
solutions appear to be quite similar while the TSD solution shows some d‘ifferences for this high

lift case. This computational algorithm is highly vectorized for use on either the CDC CYBER
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205 or the CRAY 2 computers. Computational speed averages approximately 16 psec per grid
point per time step and the memory required in kilowords is about 0.260 x (meshsize).

Periodic Aerodynamic Oscillations

in the previous sections, algorithms and experimental results directed at moving or
oscillating lifting surfaces have been presented. There is an important class of experimentally
ic flow is cbserved over very narrow ranges of test
conditions for perfectly rigid bodies. These flows tend to be found in transition regions between
attached and separated flow conditons and are recognized as highly sensitive data which may be

used for the validation of computational methods!.
In order to provide experimental data for validation of viscous flow CFD computer codes,

McDevitt et al.43 conducted tests on a rigid 18 percent thick circular arc airfoil. Figure 86
ilustrates the parameters of the experiment which was designed to encounter both trailing-
edge and shock-induced separations at high Reynolds numbers within the wind tunnel operating
limits. Over a narrow range of Mach number, 0.73 < M < 0.78, oscillatory flow separation was

observed, fig. 8745. McDevitt44 states that the oscillations involve predominantly type C shock
motion with small regions of type A motion near the onset of the periodic oscillations, fig. 88.
The reduced frequency of the oscillations is k = 0.48 for a = 0° and varies little with angle-of-
attack.

Levy45 successfully computed such oscillations for this airfol using a Navier-Stokes flow
solver. Levy's code was a_modification of the code of ref. 148 and used MacCormack's explicit
solution scheme with an algebraic eddy viscosity model. Levy modified the code to simulate the
contoured wind tunnel walls. Figure 89 shows steady computed Mach contours for Mach
numbers of 0.72 and 0.78, corresponding to trailing-edge and shock-induced separations,
respectively, and unsteady flow with oscillatory trailing-edge/shock-induced separation for M
= 0.754. The reduced frequency of the computed oscillations is 0.40, about 20 percent lower
than the measured frequency. Note particularly the lower surface Mach contours of the third
frame for M = 0.754. The few lines indicate the collapse of the supersonic region for this
portion of the cycle. Also note the dimpled nature of these Mach lines under the airfoil surface.
These features will be discussed in more detail below.

Subsequent tests on circular arc airfoils of thicknesses from 10 to 20 percent were

performed by Mabey46, obtaining similar periodic osciliations. The Mach number range of the

oscillations increases with decreasing thickness as does the oscillation frequency, remaining in
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the range of 0.4 < k < 0.55 depending on thickness and wind tunnel wall condition. Mabey et

al.47 and Levy48 give detailed comparisons of Navier-Stokes calculations with experiment for a
14 percent thick airfoil, reproducing qualitatively the details of the oscillatory flow.

These unsteady periodic flows encountered over limited ranges of Mach number and
triggered by oscillating trailing-edge/shock-induced boundary layer separation are just
recently coming within the range of computational methods. The weakest link for this capability
is the uncertainty in the turbulence modeling of complex separated flows, since rapid progress
continues to be made in the development of improved algorithms and faster computers.

It is well known that separated flows depart strongly from equilibrium - type behavior, so
that at a minimu‘m some account of the non-equilibrium "upstream history” effects should be
included in the computations. Some encouraging results along this line have been obtained by

LeBalleur149 with an integral boundary layer model and Johnson150 with an eddy-viscosity
Reynolds-shear stress closure model. Simpsoni51 recently reviewed calculation methods for
turbulent separated flows and Coakley152 compared several methods for airfoil applications.

On the other hand, Levy45 was able to reproduce the unsteady periodic flow .behavior of the
18 percent circular-arc airfoil using an equilibrium two-layer algebraic model. The steady
flow at Mach numbers below the range of periodic flow, characterized by trailing-edge
separation, was predicted accurately. Levy demonstrated that the influence of the channel walls

had a substantial impact on the comparisons with experiment, especially at Mach numbers away

from the design point. This effect was not considered in the earlier comparisons of Deiwert148
with the experimental results. The steady flow at a Mach number above the range of penodlc
flow, characterized by shock-induced separation, was not accurately predicted, as the

calculation demonstrated a normal shock pattern (fig. 89) with trailing-edge pressure
recovery, whereas the experiment indicated an oblique shock pattern and a constant pressure '
region downstream of the shock.

In addition to Levy's calculations, the unsteady periodic behavior for the 18-percent

biconvex airfoil has also been computed by Steger153 and by LeBalleur149. Steger's calculation
was for an alrfou in free-air with an implicit Navier-Stokes code using the Baldwin-Lomax
algebraic model. The unsteady flow occurred at a higher Mach number (M = 0.783) than that of
Levy (M = 0.754), which can partly be attributed to the free-air boundary conditions. The
computed reduced frequency (0.41) was remarkably close to that of Levy (0.40) although both
are low in comparison to experiment (0.48). LeBalleur's recent calculations were also made in

free-air with a small disturbance potential method including an interacted two-equation
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integral viscous model. Steady shock-induced separation was computed at M = 0.788 and
unsteady periodic flow at M = 0.76. The reduced frequency (0.34) was lower than either of the
two Navier-Stokes solutions. ’

Some calcuiations have been made using the impiicit upwind-biased Navier-Stokes
algorithm described in ref. 154 using an algebraic turbulence model. The tunnel walls were
modeled and boundary conditons appropriate for internai flow were used, i.e., ihe downsiream
pressure and upstream enthalpy, entropy, and flow direction were specified. The results
indicated unsteady flow at a higher Mach number than Levy; steady trailing-edge separation
occurred at M = 0.754 and unsteady periodic flow at M = 0.78, although the Mach number for
onset of the unsteadiness was sensitive to whether or not the divergence of the tunnel boundary
to account for boundary layer growth was included. Figure 90 shows Mach contours through one
half-cycle of oscillation (near maximum lift to minimum lift) indicating the forward
movement, disappearance, and subsequent formation near the trailing edge of the lower surface
shock. The reduced frequency of the type B unsteady motion was 0.406, in close agreement with
the calculations of both Levy kcompare fig. 89) and Steger. The implicit calculations were made
with a time step of 0.01 and a computational time of 18 ps. per grid point per time step on the
CYBER 205 computer.

The calculation of the unsteady periodic flow boundaries for airfoils is a fruitful area for the

development and validation of computational methods. Experimental pressure data43-47 over a
wide range of Reynolds number is available, although detailed boundary-layer measurements
are not. For the 18-percent biconvex experiments of McDevitt, a substantial hysteresis effect
in the unsteady flow boundary was found. This aspect has not been demonstrated with
computational methods as yet, but it would be expected, based on the above discussion, that
computational modeling as close as possible to that of the experimental conditions will be a
critical consideration. The most interesting behavior, and the most challenging from the
computational viewpoint, occurs in the transitional region from laminar to turbulent flow. In .
the experiment of McDevitt43, the Mach number range for the observed unsteady flow
diminished near a Reynolds number of 3 x 106 (fig. 87) and in the experiments of Mabey47, it
disappeared completely in the range of Reynolds number from about 3 x 208 to 5 x 106. Scale
effects in either experiment were not significant once turbulent flow is fully established ahead
of the shock.

The frequency of these oscillations is of interest in that the flow mechanism causing the

unsteadiness might be identified via the characteristic time constants of signal propagation
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within the various flow regions. Tijdeman3 noted an aimost iinear relation between the phase
lag of the shock motion and the airfoil motion for type A shock motion with a well-developed
shock (for pitch oscillations of the NLR 7301 airfoil). He related this to the signal propagaticn

time from the trailing-edge to the shock. Mabey47, commenting on characteristic time
constants for the 14 percent circular arc airfoil periodic oscillations, notes that this reasoning
leads to reduced frequency parameters of 1.15 to 1.8, much higher than the observed

frequencies.
Three items mentioned above germane to this discussion are; Steger and Bailey's25 inviscid
EE calculations for the aileron buzz case, LeBalleur and Gerodrous-Lavigne's149 interacted

viscous-TSD code result for periodic oscillations, and Batina's'08 demonstration of the
possibility of aerodynamic resonance with an inviscid TSD code. The occurrence of damped and

undamped oscillations observed for inviscid flows at nearly the same frequency as the

oscillations in viscous flow25 (k ~ 0.36-0.39) implies that the flow mechanism determining
the oscillation frequency derives. from the dynamics of the inviscid flow region. Furthermore,
the results of Refs. 108 and 149 give impetus to studying this effect with a TSD code.
Accordingly, calculations were made with the XTRAN2L code of the aerodynamic response for the
18 percent thick circular arc airfoil due to trailing-edge 25 percent chord flap motions. The

nonisentropic modifications described in egs. (70) - (77) were used to obtain solutions for

this strong-shock case. Figure 91 presents the resulting cms frequency response function for

Mach numbers of 0.66-0.74. There is a very marked development of an aerodynaic resonance
effect as Mach number increases. For M = 0.74 the airfoil resonance frequency is k = 0.32,
very cose to the computational conditions of ref. 149 for periodic oscillations (M = 0.76 and k
= 0.36).

CONCLUDING REMARKS

These lectures have summarized the status of computational unsteady aerodynamic for
lifting surfaces. The fluid dynamic flow models appropriate to the several levels of physical
models available have been presented along with details of solution algorithms. The subject has
been differentiated with respect to the difficulty of flow modeling and computational
requirements by distinguishing unsteady flow types as: |, attached flow; Il, mixed attached and
separated rov;/; and lll, separated flow.

For type | flows, computational methods have matured with a steady progression of improved
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techniques for flow simulation. Significant efforts have been devoted to understanding the
effects of equational level, computational grid, boundary conditions, and interactive viscous
modeling. Extensive comparisons with experimental data sets have been made with small
disturbance potential (both linear and transonic), potential, Euler and Navier-Stokes equation
solvers for two-dimensional airfoil cases and an understanding of the range of validity of the
various methods can be made. Less extensive comparisons ar-e available for wings and even
fewer comparisons for complex configurations involving interference effects. Experimental
unsteady data is needed for such configurations in order to validate computational methods which

can now treat complete aircraft for transonic flow conditions.
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decreases in required computer resources due to larger time steps allowed by more stable
solution algorithms. The treatment of body conforming grids for deforming aeroelastic vehicles
needs further attention to fully utilize the computational methods available.

Computational aeroelastic analysis has demonstrated capability for prediction of complete
transonic flutter boundaries for‘ wings, including significant "transonic dip" features. Many
more transonic flutter calculations will be needed to fully validate computational methods for
transonic flutter predictions as critical features of these stability boundaries frequently

involve difficult flow conditions, such as type Il mixed flow.
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Table 1. References giving comparisons of experimental and calculated
two-dimensional unsteady aerodynamics
(References from Edwards and Thomas1)

TsD FP EE NS

NACA 64A006 6, 103*, 88, 89, 87+ 102, 116 S, 15

NACA 64A010A sn, 82, 138, 8., 89, 112+, 117, 116, 79, 119 15, 30, 32 19, 17
87*, 93, 97+, 114*, 105*-108*

NACA 0012 88, 90*, 109*, 97+, 96+, 93 |:119, 100+ 29, 28, 31 152, 44, 127
43, 154

NLR 7301 89, 88, 107*, 114*, 97+ 117 16, 30, 32

MBB A-3 112+, 89, 82, 138, 114*, 63

Supercritical 154*, 109*, 65*, 66

Airfoils
Circular arc 106*, 107+, 108* 35, 37, 36, 40
Airfoils
Other 151 17, 42, 43,

148

* Interacted boundary layer model
+ Nonisentropic corrections

Table 2. References giving comparisons of experimen'tal and calculated
three-dimensional unsteady aerodynamics and aeroelasticity

(References from Edwards and Thomas1)

TS0 FP 13

f-5 Model 115, 157, 137, 23 24, 136, 153, 102

NORA 16, 22 64, 26
* LANN 100, 156 A4S, 40, 24, 76

RAE Wing A 64, 43, 26, 136

RSW 116, 7% 40, 66, 76, 25 9%, 34
RAE Tatlplane | 114, 85+, 155, 98+ 75, 13
Other 118*, 113%, 71%, 13*| 64*, 65*, 26*, JO*

+ Nonisentropic corrections
* Aeroelastic and flutter comparisons
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TABLE 6
Current Levels of Accuracy for Aeroelastic Analysis

Wing Flutter ~ 10%
Gust Response ~ 10%
Loads 5 -10%
Control Effectiveness 25 - 50%
Control Hinge Moments 25 - 50%

Buffet Loads ) 20 - 30%



TABLE 7
COMPUTER RESOURCE REQUIREMENTS FOR FLUTTER BOUNDARY
(From Ref. 100)

WING/BODY/CANARD CONFIGURATION
10 MACH NUMBERS (40 CASES) PER ANALYSIS

OPS OPS
= X _—
TIME = (GRID PTS) X (GRID PTS X ITER) (ITER)/(SEC)

FLOW REGION FLOW MODEL VPS-32 NAS
(100 MFLOPS) |(250 MFLOPS)

1, MAYBE Il TSD WITH 2-D 30 HOURS 12 HOURS
STRIP BOUNDARY
LAYER

I, MAYBE || POTENTIAL WITH 2-D 45 HOURS 18 HOURS
STRIP BOUNDARY LAYER

I, 1l, MAYBE il EULER WITH 2-D 65 HOURS 26 HOURS
STRIP BOUNDARY LAYER

1, 11 NAVIER-STOKES 1611 HOURS 644 HOURS
(RE = 108)
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TABLE 8

COMPUTER RESOURCE REQUIREMENTS TO DETERMINE FLUTTER
POINT AT A SPECIFIED MACH NUMBER
(From Ref. 100)

(4000 TIME STEPS PER FLUTTER POINT)

CONFIGURATION FLOW MODEL
COMPLETE AIRCRAFT TSD
COMPLETE AIRCRAFT FULL NAVIER-STOKES

(RE = 10 MILLION)

*BASED ON ACTUALCASES

**ASSUMES COMPUTATIONAL SPEED OF 100 MFLOPS

CPUHCURS
0.75M 2.3°
. 7.00M 77.8"°
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Fig. 1  Graphical representation of minimum
required flutter margin, (Ref. 2).
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Fig. 2 Main characteristics and boundaries for
the onset of separation for the NLR 7301
supercritical airfoil.
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Fig. 3  Characteristics of attached and
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(Farmer et al., Ref. 6)
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Fig. 5 DAST ARW-2 region of shock-induced
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Fig. 6 High dynamic response region due to
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(Bland, Ref. 17).
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Fig. 11

Variation of two-dimensional indicical

load distribution with percent chord

for a Mach number equal to 0.8.

(Lomax et al., Ref. 97).
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Surface and panel geometry for

doublet-lattice method.
(Albano and Rodden, Ref. 95)

Re(Generalized Force/q)
0 10. 20. 30.

~.
~.

~/ &,
B NGRS

RHOLY
0 Lift/radian
- r 32.02, -16.50

ref. length = 1.0

Im{Generalized Force/q;

L Moment/radian
-50. 28.43, -36.63

Bl RHOIV \X%

40.

[0 Jeadi—
\ ) Doubiet Lattice
. ~ / Boxes/Chord/

-
SO F

p— —
EQO WO F

Comparison of generalized force

vectors predicted by RHOIV and
doublet lattice on a rectangular wing

of AR = 4, pitching about the

trailing edge

atk = 0.3, M = 0.9, wave number = 2.7.

(Rowe and Cunningham, Ref.
Re(Hinge Moment/a)

96)

-2 -4 -.6 -8 -i.0

T T T T

AN

i - N

Doublet Lattice

AN
.

.
N\, ®

Im(Hinge Moment/q)

X
=31 Hinge Moment/radian N ®
..8907, -1.0236 ~___ \
RHOIV 47 CRUS ~
\D

1.0

5 Hinge moment vectors due to

1

*.. Boxes/Chord(boxes on c/s}

/CRUS

6(2) 6

5(3) 13
12(4) 35
15(5) 90
18(6) 232

control surface

motions for a wave number of 5.4,

(Rowe and Cunningham, Ref.

96)

imic ) 100

-100 l___., R ,_,__L e
-1 0 1
X

Fig. 16 Pressure coefficient distribution due to
airfoil plunging as a function of x and k
at Mach 0.7.
(Edwards, Ref. 38)

Fig. 17 Pressure coefficient distribution due to
airfoil plunging as a function of x and k
at Mach 1.02 and k = 0.4
(Edwards, Ref. 98)
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Fig. 18 Lift coefficient of a typical section due
to pitching about the quarter-chord as a
function of Mach number for reduced
frequencies of 0.2 and 0.4. ~

tmiC )

Fig. 19 Generalized lift coefficient of a wing due
to rigid plunging at Mach 0.5 as a function
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(Whitlow, Ref. 101)
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Fig. 49 Pitching moment coefficient due to flap
motion for the NACA 64A006 airfoil.
(Edwards and Thomas, Ref. 1)

3rm_ | symool | M_ | Symbol
60| a f.amo|
2re90| b [.790| gq
Jwof c¢ {.810f h
NEE TR K-S Ta e /
"750| e 9 3
Cl i h
0
;
-1 t o h
3¢ % d e " g
-21 i i 1 — 1 1 2 1 o
5 4 -3 -2 -1 0 1 2 3 4 5
a
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computed with FLO36 code versus
angle-of-attack as a function of Mach
number.

(Salas and Gumbert, Ref. 116)
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Fig. 52

solutions for NACA 0012 airfoil at
M = 0.85, am = 0°.
(Williams et al.,, Ref. 118)
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Fig. 68 Comparison between CAP-TSD and experimental steady pressure distributions on the
wing and tail of the F-16C aircraft model at M = 0.9 and am = 2.38". "
(Batina, et al., ref. 85)
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Fig. 69 CAP-TSD unsteady pressure distributions on the upper surfaces of the wing and tail of
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am = 2.38°, ao = 0.5°, and k = 0.1.
(Batina, et al., ref. 85)

Fig. 70 Planview of 45° sweptback flutter model wing.
(Cunningham et al., ref. 127)
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Fig. 76 Unsteady forces and moments; NACA 0012,
Me = 0.755, k = 0.0814, am = 0.016°,
at = 2.51°.

(Anderson et al., Ref. 81)
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M = 0.755, k = 0.0814, am = 0.016°,
o = 2.510. -N.'z .‘2 ) ~ - 3.:‘
. : GLP-E
(Anderson’ et al., Ref. 81)

Fig. 77 Lift and pitch-moment coefficients.
NACA 0012, Mw = 0.755, a0 = 2.51°,
k = 0.0814, at = 0.005.

(Kandil and Chuang, ref. 146)
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Fig. 78 Lift and pitching-moment coefficients,
NACA 0012, Mg = 0.6, om = 4.86°,
0o = 2.44°, k = 0.081, At = 0.01.
(Kandil and Chuang, ref. 146)

Fig. 79 Summary of surface pressure on a rolling delta
wing during one cycle of periodic response for
Mo =2, a=10° o = 0.35, k = 1.337, Bmax = 1!
(Kandil and Chuang, ref. 146)
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Fig. 80 F-5 steady pressure distributions at two spanwise positions for four freestream
Mach numbers and zero degrees angle of attack.
(Anderson, et al., ref. 81)
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Fig. 81 Comparison of measured and calculated unsteady pressures on F-5 wing model.
(Anderson, et al., ref. 81)
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3. 82 Computed variation of aileron angle with time
showing buzz condition.
(Steger and Bailey, ref. 25) -5
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Fig. 84 Comparison of calculated and measured
pressure coefficients: for NACA 64A010A
airfoil at shock-induced separation condition,
a =4°+ 1° cos ot.
(Chyu and Davis, ref. 27)
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Fig. 83 Mean and first harmonic complex components of pressure coefficients:
a = 0° + 1° cos ot. (Chyu and Davis, ref. 27)
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85 Comparison of unsteady forces versus
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angle of attack for the NACA 0012 airfoil at
M = 0.599, am = 4.86°, a0 = 2.44°, Re = 4.8 x 106.
(Rumsey and Anderson, ref. 78)
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Fig. 90 Calculated periodic oscillation for 18% biconvex airfoil with implicit thin-layer

Navier-Stokes code, M = 0.78, Re = 11 x 106, k = 0.406.
(Edwards and Thomas, ref. 1)
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Fig. 91 Calculated pitching moment coefficient for 18% biconvex airfoil with non-isentropic
TSDcode. - .

(Edwards and Thomas, ref. 1)




